摘要:Various welding methods are widely applied in large fabrication of high strength steel. However, commonly the problem occurs where a coarse grain is formed near fusion zone causing reduce the impact toughness due to the weld joint become brittle. Ductility and toughness in a coarse grain heat affected zone (CGHAZ) is low due to the formation of coarsening grain size. The objective of this research is to investigate the microstructure evolution, impact toughness and fracture appearance at sub-zero temperatures of the high strength steel arc welded. The steel that used in this experiment is a HY-80 steel welded by gas metal arc welding (GMAW) with a mixture of argon and carbon dioxide (90%Ar and 10%CO2) and ER100S solid wire. Microstructure observation and Charpy V-notch (CVN) tests were performed on the weld joint which consist of base metal (BM), heat affected zone (HAZ), and weld metal (WM). The CVN tests on the HY-80 steel plate at various temperatures (20, -20, -60 and -80 °C) show impact toughness decrease when the test temperature decrease. The CVN tests on the HY-80 weld joint at a temperature of 80 °C show the lowest impact toughness was measured at WM (61 J) and followed fusion line-FL (101 J) with brittle fracture appearance.