首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Non-Commutative Probability Models in Human Decision Making: Binary Hypothesis Testing
  • 本地全文:下载
  • 作者:Aneesh Raghavan ; John S. Baras
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:51
  • 期号:34
  • 页码:47-52
  • DOI:10.1016/j.ifacol.2019.01.019
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, we consider the binary hypothesis testing problem, as the simplest human decision making problem, using a von-Neumann non-commutative probability framework. We present two approaches to this decision making problem. In the first approach, we represent the available data as coming from measurements modeled via projection valued measures (PVM) and retrieve the results of the underlying detection problem solved using classical probability models. In the second approach, we represent the measurements using positive operator valued measures (POVM). We prove that the minimum probability of error achieved in the second approach is the same as in the first approach.
  • 关键词:KeywordsHypothesis testingPVMPOVM
国家哲学社会科学文献中心版权所有