首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Robust Data-Based Model Predictive Control for Nonlinear Constrained Systems ⁎
  • 本地全文:下载
  • 作者:J.M. Manzano ; D. Limon ; D. Muñz de la Peñ
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:20
  • 页码:505-510
  • DOI:10.1016/j.ifacol.2018.11.039
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents stabilizing Model Predictive Controllers (MPC) to be applied to black-box systems subject to constraints in the inputs and the outputs. The prediction model of the controllers is inferred from experimental data of the inputs and outputs of the plant. Using a nonparametric machine learning technique called SPKI, the estimated (possibly nonlinear) model function is provided. Based on this, a predictive controller with stability guaranteed by design is proposed. Robust stability and recursive feasibility is ensured by using tightened constraints in the optimisation problem but without adding a terminal constraint on the optimisation problem. The proposed predictive controller has been validated in a simulation case study.
  • 关键词:KeywordsMPCData-based controlMachine learningInput-to-state stability
国家哲学社会科学文献中心版权所有