摘要:This study aims to develop a web-based expert system that can identify cassava disease using Case-Based Reasoning Method and Shafer Dempster Method, and to know the performance comparison of both based on the accuracy of identification. Case-Based Reasoning (CBR) is a computer-generated system that uses old knowledge to solve new problems. CBR provides solutions to new cases by looking at the oldest cases that are closest to new cases. The identification process is done by entering new cases containing the symptoms to be identified into the system, then perform the process of calculating the value of similarity between the new case and the base case using the nearest neighbor method. Dempster Shafer based on two ideas is the idea of obtaining degrees of confidence of subjective possibilities and the rule of dempster safer itself to combine degrees of confidence based on the evidence obtained. This expert system is built using PHP programming language and MySQL data base. The output of the system is the percentage of identification result of both methods. Testing and analysis results show that Case-Based Reasoning provides better identification accuracy than Dempster Shafer.