摘要:This paper analyses a class of bridge-type distributed-compliance mechanism, which has better performances than traditional bridge-type mechanisms using notch flexure hinges. An analytical model for the displacement amplification ratio and input stiffness calculations of the bridge-type mechanism is established based on the stiffness matrix method. The finite element analysis results are then given to validate the correctness of the analytical model. The differences of the analytical results with respect to the finite element analysis results are less than 8%, which demonstrate the high accuracy of the analytical model. The influences of the geometric parameters on the amplification ratio and input stiffness of the mechanism are also investigated using the analytical model to provide theoretical guidelines for the practical design.