首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Fault Tolerant Deep Neural Networks for Detection of Unrecognizable Situations
  • 本地全文:下载
  • 作者:Kaoutar Rhazali ; Benjamin Lussier ; Walter Schön
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:24
  • 页码:31-37
  • DOI:10.1016/j.ifacol.2018.09.525
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractDeep Neural Networks are achieving great success in various fields. However, their use remains limited to non critical applications because their behavior is unpredictable and unsafe. In this paper we propose some fault tolerant approaches based on diversifying learning in order to improve DNNs dependability and particularly safety. Our main goal is to increase trust in the outcome of deep learning mechanisms by recognizing the unlearned inputs and preventing misclassification.
  • 关键词:KeywordsSafetyFault ToleranceArtificial IntelligenceNeural NetworksAutonomous Vehicles
国家哲学社会科学文献中心版权所有