首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Machine-learning for biopharmaceutical batch process monitoring with limited data
  • 本地全文:下载
  • 作者:Aditya Tulsyan ; Christopher Garvin ; Cenk Undey
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:18
  • 页码:126-131
  • DOI:10.1016/j.ifacol.2018.09.287
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractCommercial biopharmaceutical manufacturing comprises of multiple distinct processing steps that require effective and efficient monitoring of many variables simultaneously in real-time. This article addresses the problem of real-time statistical batch process monitoring (BPM) for biopharmaceutical processes with limited production history; herein, referred to as the ‘Low-N’ problem. In this article, we propose an approach to transition from a Low-N scenario to a Large-N scenario by generating an arbitrarily large number ofin silicobatch data sets. The proposed method is a combination of hardware exploitation and algorithm development. To this effect, we propose a Bayesian non-parametric approach to model a batch process, and then use probabilistic programming to generate an arbitrarily large number of dynamicin silicocampaign data sets. The efficacy of the proposed solution is elucidated on an industrial process.
  • 关键词:KeywordsProcess monitoringLow-N problemBiopharmaceutical manufacturing
国家哲学社会科学文献中心版权所有