首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Fault Detection in Continuous Glucose Monitoring Sensors for Artificial Pancreas Systems
  • 本地全文:下载
  • 作者:Xia Yu ; Mudassir Rashid ; Jianyuan Feng
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:18
  • 页码:714-719
  • DOI:10.1016/j.ifacol.2018.09.279
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractContinuous glucose monitoring (CGM) sensors are a critical component of artificial pancreas (AP) systems that enable individuals with type 1 diabetes to achieve tighter blood glucose control. CGM sensor signals are often afflicted by a variety of anomalies, such as biases, drifts, random noises, and pressure-induced sensor attenuations. To improve the accuracy of CGM measurements, an on-line fault detection method is proposed based on sparse recursive kernel filtering algorithms to identify faults in glucose concentration values. The fault detection algorithm is designed to effectively handle the nonlinearity of the measurements and to differentiate the normal variability in the glycemic dynamics from sensor anomalies. The effectiveness of the proposed recursive kernel filtering algorithm for sensor error detection is demonstrated using simulation studies.
  • 关键词:KeywordsKernel filtering algorithmssparsificationfaults detectionsensor errorsartificial pancreas
国家哲学社会科学文献中心版权所有