首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Pattern and Knowledge Extraction using Process Data Analytics: A Tutorial
  • 本地全文:下载
  • 作者:Yiting Tsai ; Qiugang Lu ; Lee Rippon
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:18
  • 页码:13-18
  • DOI:10.1016/j.ifacol.2018.09.237
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractTraditional techniques employed by control engineers require a significant update in order to handle the increasing complexity of modern processes. Conveniently, advances in statistical machine learning and distributed computation have led to an abundance of techniques suitable for advanced analysis. In this tutorial we introduce data analytics techniques and discuss their theory and application to chemical processes. Although the focus is more on theory, the applications will be explored more widely in a follow-up journal paper. The ultimate goal is to familiarize control engineers with how these techniques are used to extract valuable knowledge from raw data, which can then be utilized to make smarter process control decisions.
  • 关键词:KeywordsMachine learningClassificationRegressionNeural networksGaussian processes
国家哲学社会科学文献中心版权所有