首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Incremental Segmentation of ARX Models ⁎
  • 本地全文:下载
  • 作者:Glen Chou ; Necmiye Ozay ; Dmitry Berenson
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:587-592
  • DOI:10.1016/j.ifacol.2018.09.222
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe consider the problem of incrementally segmenting auto-regressive models with exogenous inputs (ARX models) when the data is received sequentially at run-time. In particular, we extend a recently proposed dynamic programming based polynomial-time algorithm for offline (batch) ARX model segmentation to the incremental setting. The new algorithm enables sequential updating of the models, eliminating repeated computation, while remaining optimal. We also show how certain noise bounds can be used to detect switches automatically at run-time. The efficiency of the approach compared to the batch method is illustrated on synthetic and real data.
  • 关键词:KeywordsSwitching autoregressive modelschange detectiondynamic programming
国家哲学社会科学文献中心版权所有