首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Learning Nonlinear State-Space Models Using Smooth Particle-Filter-Based Likelihood Approximations ⁎
  • 本地全文:下载
  • 作者:Andreas Svensson ; Fredrik Lindsten ; Thomas B. Schön
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:652-657
  • DOI:10.1016/j.ifacol.2018.09.216
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWhen classical particle filtering algorithms are used for maximum likelihood parameter estimation in nonlinear state-space models, a key challenge is that estimates of the likelihood function and its derivatives are inherently noisy The key idea in this paper is to run a particle filter based on a current parameter estimate, but then use the output from this particle filter to re-evaluate the likelihood function approximation also for other parameter values. This results in a (local) deterministic approximation of the likelihood and any standard optimization routine can be applied to find the maximum of this approximation. By iterating this procedure we eventually arrive at a final parameter estimate.
  • 关键词:KeywordsSystem identificationparameter estimationnonlinear state-space modelsparticle filtermaximum likelihoodoptimization
国家哲学社会科学文献中心版权所有