首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Online Features in the MATLAB ® System Identification Toolbox TM
  • 本地全文:下载
  • 作者:Lennart Ljung ; Ahmet Arda Ozdemir ; Rajiv Singh
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:700-705
  • DOI:10.1016/j.ifacol.2018.09.201
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractBecause of the increased demand on fault detection, monitoring and predictive maintenance, online or recursive identification is playing a more important role in systems engineering. In the recent releases of System Identification Toolbox™ for MATLAB®, this has been reflected in a more substantial support for online techniques. This contribution gives an account of these improvements. It covers the addition of nonlinear filtering algorithms, such as the extended Kalman filter, the unscented Kalman filter and particle filters. The traditional recursive estimation techniques for polynomial models have also been enhanced with a more versatile syntax. Several new Simulink®blocks have been developed to support Simulink®models with online estimation.
  • 关键词:KeywordsParameter estimationOnline algorithmsRecursive identificationSimulation
国家哲学社会科学文献中心版权所有