首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Image Reconstruction for Electrical Impedance Tomography: Experimental Comparison of Radial Basis Neural Network and Gauss – Newton Method
  • 本地全文:下载
  • 作者:Radek Hrabuska ; Michal Prauzek ; Marketa Venclikova
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:6
  • 页码:438-443
  • DOI:10.1016/j.ifacol.2018.07.114
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractElectrical impedance tomography (EIT) is an intensively researched noninvasive diagnostic method for medical use, that can help to improve the lung diagnostics, artificial lung ventilation and prevent lung injuries. Further improvements of reconstruction algorithms and measurement devices are essential to widen the use of EIT as a lung diagnostic method. To test potential of Radial Basis Neural Networks (RBNN) and Hopfield Neural Networks (HNN) for image reconstruction experiment is carried. Said neural networks are compared with Gauss – Newton (GN) algorithm. Results of the experiment show higher reconstruction accuracy with RBNN and HNN over GN algorithm.
  • 关键词:KeywordsElectrical Impedance TomographyNeural NetworksImage Reconstruction Algorithms
国家哲学社会科学文献中心版权所有