首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:CO envelope of the symbiotic star R Aquarii seen by ALMA
  • 本地全文:下载
  • 作者:S. Ramstedt ; S. Mohamed ; T. Olander
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2018
  • 卷号:616
  • DOI:10.1051/0004-6361/201833394
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:The symbiotic star R Aqr is part of a small sample of binary AGB stars observed with the Atacama Large Millimeter/submillimeter Array (ALMA). The sample stars are: R Aqr, Mira, W Aql, andπ1Gru. The sample covers a range in binary separation and wind properties, where R Aqr is the source with the smallest separation. The R Aqr binary pair consists of an M-type AGB star and a white dwarf at a separation of 45 mas, equivalent to about 10 AU at 218 pc. The aim of the ALMA study is to investigate the dependence of the wind shaping on the binary separation and to provide constraints for hydrodynamical binary interaction models. R Aqr is particularly interesting as the source with the smallest separation and a complex circumstellar environment that is strongly affected by the interaction between the two stars and by the high-energy radiation resulting from this interaction and from the hot white dwarf companion.The CO(J= 3 →2) line emission has been observed with ALMA at ~0.5′′ spatial resolution. The CO envelope around the binary pair is marginally resolved, showing what appears to be a rather complex distribution. The outer radius of the CO emitting region is estimated from the data and found to be about a factor of 10 larger than previously thought. This implies an average mass-loss rate during the past ~100 yr ofṀ≈ 2×10−7M⊙yr−1, a factor of 45 less than previous estimates. The channel maps are presented and the molecular gas distribution is discussed and set into the context of what was previously known about the system from multiwavelength observations. Additional molecular line emission detected within the bandwidth covered by the ALMA observations is also presented.Because of the limited extent of the emission, firm conclusions about the dynamical evolution of the system will have to wait for higher spatial resolution observations. However, the data presented here support the assumption that the mass-loss rate from the Mira star strongly varies and is focused on the orbital plane.
  • 关键词:Key wordsenstars: AGB and post-AGBbinaries: symbioticcircumstellar matterstars: winds, outflows
国家哲学社会科学文献中心版权所有