首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Quasi-Newton particle Metropolis-Hastings *
  • 本地全文:下载
  • 作者:Johan Dahlin ; Fredrik Lindsten ; Thomas B. Schön
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:28
  • 页码:981-986
  • DOI:10.1016/j.ifacol.2015.12.258
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractParticle Metropolis-Hastings enables Bayesian parameter inference in general nonlinear state space models (SSMs). However, in many implementations a random walk proposal is used and this can result in poor mixing if not tuned correctly using tedious pilot runs. Therefore, we consider a new proposal inspired by quasi-Newton algorithms that may achieve similar (or better) mixing with less tuning. An advantage compared to other Hessian based proposals, is that it only requires estimates of the gradient of the log-posterior. A possible application is parameter inference in the challenging class of SSMs with intractable likelihoods.We exemplify this application and the benefits of the new proposal by modelling log-returns offuture contracts on coffee by a stochastic volatility model with α-stable observations.
  • 关键词:KeywordsBayesian parameter inferencestate space modelsapproximate Bayesian computationsparticle Markov chain Monte Carloα-stable distributions
国家哲学社会科学文献中心版权所有