首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Inference of cancer progression from somatic mutation data
  • 本地全文:下载
  • 作者:Hao Wu ; Lin Gao ; Nikola Kasabov
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:28
  • 页码:234-238
  • DOI:10.1016/j.ifacol.2015.12.131
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractLarge-scale cancer genomics projects are providing a wealth of somatic mutation data. Therefore, one of the most challenging problems arising from the data is to infer the temporal order of somatic mutations. In the paper, we present a network-based method (NetInf) to infer cancer progression at the pathway level. We apply it to analyze somatic mutation data from real cancer studies. Experimental results show that these detected pathways overlap with known pathways, including RB, P53 signaling pathways. Our method reduces computational complexity and also provides new insights on the temporalorder of somatic mutations at the pathway level.
  • 关键词:KeywordsCancer genomeCancer progressionNetwork modelsDynamic problemDriver mutation
国家哲学社会科学文献中心版权所有