首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Real-Time Markov Chain Driver Model for Tracked Vehicles
  • 本地全文:下载
  • 作者:Dexing Liu ; Yuan Zou ; Teng Liu
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:15
  • 页码:361-367
  • DOI:10.1016/j.ifacol.2015.10.052
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe design of an energy management strategy for a hybrid electric vehicle typically requires an estimate of requested power from the driver. If the driving cycle is not known a priori, stochastic method such as a Markov chain driver model (MCDM) must be employed. For tracked vehicles, steering power, which is related to the vehicle angular velocity, is a significant component of the driver demand. In this paper, a three-dimensional MCDM incorporating angular velocity for a tracked vehicle is proposed. Based on the nearest-neighborhood method (NNM), an online transition probability matrix (TPM) updating algorithm is implemented for the three-dimensional MCDM. Simulation results show that the TPM is able to update online when the driving cycle is available. Moreover, the older and recent observations can be weighted appropriately by adjusting a forgetting factor.
  • 关键词:KeywordsMarkov chain driver model (MCDM)tracked vehiclenearest-neighborhood method (NNM)transition probability matrix (TPM)online updating algorithmenergy management
国家哲学社会科学文献中心版权所有