首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Estimation of the wind turbine yaw error by support vector machines
  • 本地全文:下载
  • 作者:Nida Sheibat-Othman ; Sami Othman ; Raoaa Tayari
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:30
  • 页码:339-344
  • DOI:10.1016/j.ifacol.2015.12.401
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWind turbine yaw error information is of high importance in controlling wind turbine power and structural load. Normally used wind vanes are imprecise. In this work, the estimation of yaw error in wind turbines is studied using support vector machines for regression (SVR). As the methodology is data-based, simulated data from a high fidelity aero-elastic model is used for learning. The model simulates a variable speed horizontal-axis wind turbine composed of three blades and a full converter. Both partial load (blade angles fixed at 0 deg) and full load zones (active pitch actuators) are considered. The validation step is done under different conditions of wind shear, speed and direction, giving good estimation results.
  • 关键词:KeywordsWind turbinesupport vector machinesregression
国家哲学社会科学文献中心版权所有