首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:EEG Emotion Recognition Based on the Dimensional Models of Emotions
  • 本地全文:下载
  • 作者:Marini Othman ; Marini Othman ; Abdul Wahab
  • 期刊名称:Procedia - Social and Behavioral Sciences
  • 印刷版ISSN:1877-0428
  • 出版年度:2013
  • 卷号:97
  • 页码:30-37
  • DOI:10.1016/j.sbspro.2013.10.201
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, we propose a method for EEG emotion recognition which is tested based on 2 dimensional models of emotions, (1) the rSASM, and (2) the 12-PAC model. EEG data were collected from 5 preschoolers aged 5 years old while watching emotional faces from the Radboud Faces Database (RafD). Features were extracted using KSDE and MFCC and classified using MLP. Results show that EEG emotion recognition using the 12-PAC model gives the highest accuracy for both feature extraction methods. Results indicated that the accuracy of EEG emotion recognition is increased with the precision of the dimensional models.
  • 关键词:brain signals;valence-arousal model;preschoolers;children;emotions;machine learning;classification.
国家哲学社会科学文献中心版权所有