首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Complex Network Approach for the Complexity and Periodicity in Traffic Time Series
  • 本地全文:下载
  • 作者:Jinjun Tang ; Jinjun Tang ; Yinhai Wang
  • 期刊名称:Procedia - Social and Behavioral Sciences
  • 印刷版ISSN:1877-0428
  • 出版年度:2013
  • 卷号:96
  • 页码:2602-2610
  • DOI:10.1016/j.sbspro.2013.08.291
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, we firstly use the traffic flow data collected from loop detectors on freeway and measure the complexity of data by Lempel-Ziv algorithm at different temporal scales. Considering each day as a cycle and each cycle as a single node, we then construct complex networks by using the distribution of density and its derivative. In addition, the networks are analyzed in terms of some statistical properties, such as average path length, clustering coefficient, density, and average degree. Finally, we use the correlation coefficient matrix, adjacent matrix and closeness to exploit the periodicity in weekdays and weekends of traffic flow data.
  • 关键词:complex network;traffic time series;complexity;closeness;periodicity
国家哲学社会科学文献中心版权所有