首页    期刊浏览 2025年01月19日 星期日
登录注册

文章基本信息

  • 标题:Sovereign Debt Crisis – An Approach Based on Clusterization and Binary Classification Branche
  • 本地全文:下载
  • 作者:Stelian Stancu ; Stelian Stancu ; Alexandra Maria Constantin
  • 期刊名称:Procedia - Social and Behavioral Sciences
  • 印刷版ISSN:1877-0428
  • 出版年度:2013
  • 卷号:93
  • 页码:1926-1930
  • DOI:10.1016/j.sbspro.2013.10.142
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe current paper has multiple specific objectives: characterizing the sovereign debt crisis and its mathematical approach in order to find relations between causal components; another specific objective of the paper is demonstrating and applying data mining techniques in quantitative analysis of the sovereign debt crisis. Thus, in the multidimensional analysis of the sovereign debt crisis we will use advanced techniques such as: clusterization or those ased on binary classification branches (C 4.5, CART, Logistic Model Trees, Random Forest, Alternating Decision Tree, Naïve Bayesian Classifier, Bayesian Logistic Regression). An empiric study will also be carried out, on the basis of which several less known aspects of the sovereign debt crisis will be revealed.
  • 关键词:sovereign debt crisis;multidimensional analysis;Binary Recursive Trees;evolution trajectory.
国家哲学社会科学文献中心版权所有