摘要:AbstractHuman brain has always been considered as a black box and is the source of all emotions. Analyzing cultural and language role through human emotion by looking at the brain activity can thus help us understand depression and stress better. This paper focuses on understanding and analyzing undergraduate students’ emotions with different background and culture after completing their semester final examination. Brain wave signals were captured using EEG device and analyzed through proposing an affective computation model. EEG signal was collected from 8 healthy subjects from different states of Malaysia with different dialects where each subject was emotionally induced with audio and video emotion stimuli using the International Affective Pictures and System (IAPS). Features were extracted from the captured EEG signals using Kernel Density Estimation (KDE), which was then categorized into four basic emotions of happy, calm, sad and fear using the Multi-layer Perceptron (MLP). Results of the study show potential of using such analysis in understanding stress, anxiety and depression.
关键词:Kernel Density Estimation (KDE);Multi-layer Perceptron (MLP);electroencephalogram (EEG);basic emotions;brain activity