首页    期刊浏览 2025年03月03日 星期一
登录注册

文章基本信息

  • 标题:Improving Fault Isolation in DC/DC Converters Based with Bayesian Belief Networks
  • 本地全文:下载
  • 作者:Abbass Zein Eddine ; Iyad Zaarour ; Francois Guerin
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:5
  • 页码:303-308
  • DOI:10.1016/j.ifacol.2016.07.130
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper lies in the domain of Fault Detection and Isolation (FDI). A Bayesian Naïve Classifier (BNC) structure is selected and used as a first attempt to use Bayesian Belief Networks (BBNs) for DC/DC power converter FDI. In order to highlight the BNC capabilities, it is compared to the well known and used FDI method based on Proportional Observer (PO). This comparative study is based on real data collected from a Zero Volt Switch (ZVS) Full Bridge Isolated Buck converter.
  • 关键词:KeywordsFault DetectionIsolation (FDI)DC/DC converterBayesian Belief NetworkObserver designBayesian Naive Classifier
国家哲学社会科学文献中心版权所有