首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Improvement of LMI controllers of Takagi-Sugeno models via Q-learning *
  • 本地全文:下载
  • 作者:Henry Díaz ; Leopoldo Armesto ; Antonio Sala
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:5
  • 页码:67-72
  • DOI:10.1016/j.ifacol.2016.07.091
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents a preliminary attempt to bridge the conservative (shape-independent) results from guaranteed-cost LMIs and the reinforcement learning setups which learn optimal controllers from data. In this sense, the proposed approach uses an initialization based on the LMI solution and proposes an approximation of the Q-function using polynomials of the membership functions in Takagi-Sugeno models. The resulting controller is shape-dependent, that is, uses the knowledge of membership functions and data to clearly improve LMI solutions.
  • 关键词:KeywordsReinforcement learningadaptive dynamic programmingQ-learningTakagi-SugenoLMI
国家哲学社会科学文献中心版权所有