首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Monte Carlo Gaussian Sum Filter For State Estimation of Nonlinear Dynamical Systems ∗
  • 本地全文:下载
  • 作者:Krishna Kumar Kottakki ; Mani Bhushan ; Sharad Bhartiya
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:1
  • 页码:65-70
  • DOI:10.1016/j.ifacol.2016.03.030
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis work presents a novel nonlinear/non-Gaussian state estimation algorithm, named as, Monte Carlo Gaussian Sum Filter (MC-GSF). The proposed approach combines the elements of Monte Carlo (MC) sampling and design choices in recently developed Unscented Gaussian Sum Filter (UGSF). While the MC sampling retains the sampling benefits in capturing moments of non-Gaussian densities, the design choices in UGSF improves the ability of MC samples by means of sum of Gaussians representation. Further, the design choices in UGSF also overcomes the potential degeneracy issues persisting with Particle filters and Gaussian Sum Filters. We demonstrate the superiority of proposed approach by implementing on an illustrative case study.
  • 关键词:Keywordssum of Gaussiansnonlinear state estimationparticle filterunscented Gaussian sum filter
国家哲学社会科学文献中心版权所有