首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Optimization Based Constrained Gaussian Sum Unscented Kalman Filter ∗
  • 本地全文:下载
  • 作者:Krishna Kumar Kottakki ; Mani Bhushan ; Sharad Bhartiya
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:1
  • 页码:59-64
  • DOI:10.1016/j.ifacol.2016.03.029
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis work presents a novel constrained nonlinear state estimation approach for nonlinear dynamical systems. The proposed approach combines two key elements from well know Gaussian Sum Unscented Kalman Filter (GS-UKF) and Unscented Recursive Nonlinear Dynamic Data Reconciliation (URNDDR) approaches. The proposed approach uses sum of Gaussians representation in GS-UKF and explicit constrained update in URNDDR to obtain feasible state estimates. The benefits of the proposed approach are demonstrated over the available constrained GS-UKF variants using a three state isothermal batch process case study available in literature.
  • 关键词:KeywordsSum of Gaussiansnonlinear state estimationinterval constraintsconstrained updateBayes’ ruleKalman Filter
国家哲学社会科学文献中心版权所有