首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Assessment of Model-Plant Mismatch by the Nominal Sensitivity Function for Unconstrained MPC
  • 本地全文:下载
  • 作者:Viviane Rodrigues Botelho ; Jorge Otávio Trierweiler ; Marcelo Farenzena
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:8
  • 页码:753-758
  • DOI:10.1016/j.ifacol.2015.09.059
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractModel Predictive Control (MPC) is a class of control systems which use a dynamic process model to predict the best future control actions based on past information. Thus, a representative process model is a key factor for its correct performance. Therefore, the investigation of model-plant-mismatch effect is very important issue for MPC performance assessment, monitoring, and diagnosis. This paper presents a method for model quality evaluation based on the investigation of closed-loop data and the nominal complementary sensitivity function. The proposed approach ensures that the MPC tuning is taken into account in the evaluation of the model quality. A SISO case study is analyzed and the results show the effectiveness of the method.
  • 关键词:KeywordsModel Predictive ControlModel Plant MismatchSensitivity FunctionControl Performance Assessment
国家哲学社会科学文献中心版权所有