期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
印刷版ISSN:2302-9293
出版年度:2015
卷号:13
期号:2
页码:711-721
DOI:10.12928/telkomnika.v13i2.1438
语种:English
出版社:Universitas Ahmad Dahlan
摘要:Due to the downside characteristics of Mobile Ad hoc Networks (MANETs) such as dynamic topology and energy consumption and control overhead, network clustering is one of the promising solutions. Cluster Based Routing Protocol (CBRP) is a robust and scalable routing protocol for MANETs. Clustering formation algorithm used in CBRP is a variation of simple lowest-ID algorithm in which the node with a lowest ID among its neighbors is elected as the Cluster head. Neglecting mobility and energy for selecting cluster head is one of the weakness points of the algorithm. In order to increase stability of the network and to prevent re-clustering an adaptive energy-aware Cluster Based Routing Protocol (AECBRP) is proposed. Two algorithms have been introduced in AECBRP as enhancement to the CBRP: improving the cluster formation algorithm by considering relative mobility, residual energy and connectivity degree metrics, and add in an efficient cluster maintenance algorithm based on the aggregate energy metric of cluster head. Using NS-2 we evaluate the rate of cluster-head changes, the normalization routing overhead and the packet delivery ratio. Comparisons denote that the proposed AECBRP has better performances with respect to the original CBRP and Cross-CBRP.
其他摘要:Due to the downside characteristics of Mobile Ad hoc Networks (MANETs) such as dynamic topology and energy consumption and control overhead, network clustering is one of the promising solutions. Cluster Based Routing Protocol (CBRP) is a robust and scalable routing protocol for MANETs. Clustering formation algorithm used in CBRP is a variation of simple lowest-ID algorithm in which the node with a lowest ID among its neighbors is elected as the Cluster head. Neglecting mobility and energy for selecting cluster head is one of the weakness points of the algorithm. In order to increase stability of the network and to prevent re-clustering an adaptive energy-aware Cluster Based Routing Protocol (AECBRP) is proposed. Two algorithms have been introduced in AECBRP as enhancement to the CBRP: improving the cluster formation algorithm by considering relative mobility, residual energy and connectivity degree metrics, and add in an efficient cluster maintenance algorithm based on the aggregate energy metric of cluster head. Using NS-2 we evaluate the rate of cluster-head changes, the normalization routing overhead and the packet delivery ratio. Comparisons denote that the proposed AECBRP has better performances with respect to the original CBRP and Cross-CBRP.