首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Bisecting K-means Algorithm Based on K-valued Selfdetermining and Clustering Center Optimization
  • 本地全文:下载
  • 作者:Jian Di ; Xinyue Gou
  • 期刊名称:Journal of Computers
  • 印刷版ISSN:1796-203X
  • 出版年度:2018
  • 卷号:13
  • 期号:6
  • 页码:588-595
  • DOI:10.17706/jcp.13.6.588-595
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:The initial clustering centers of traditional bisecting K-means algorithm are randomly selected andthe k value of traditional bisecting K-means algorithm could not determine beforehand. This paper proposesa improve bisecting K-means algorithm based on automatically determining K value and the optimization ofthe cluster center. Firstly, the initial cluster centers are selected by using the point density and the distancefunction; Secondly, automatically determining K value is proposed by using Intra cluster similarity and intercluster difference. the experiment results on UCI database show that the algorithm can effectively avoid theinfluence of noise points and outliers, and improve the accuracy and stability of clustering results.
  • 关键词:Bisecting k-means; K; cluster center; accuracy rate.
国家哲学社会科学文献中心版权所有