首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:ANALYSIS OF THE IMPORTANCE OF THE FACTORS THAT INFLUENCE UREA HYDROLYSIS THROUGH AN ARTIFICIAL NEURAL NETWORK
  • 本地全文:下载
  • 作者:Tao Lei ; Xihuan Sun ; Xianghong Guo
  • 期刊名称:Fresenius Environmental Bulletin
  • 印刷版ISSN:1018-4619
  • 出版年度:2017
  • 卷号:26
  • 期号:10
  • 页码:6184-6190
  • 语种:English
  • 出版社:PSP Publishing
  • 摘要:The importance of the factors that influence urea hydrolysis rate was analyzed to reveal the mechanism of urea hydrolysis and improve urea utilization efficiency. BP-K and DE-K prediction models were established based on the traditional back-propagation (BP) neural network model and the BP model optimized by the differential evolution algorithm (DE). The two models designed to predict the urea hydrolysis rate were validated with the measured value. The input variables in the two models were soil temperature, nitrogen amount, and moisture content, and the output variable was soil urea hydrolysis rate. Results showed that the BP-K and DE-K models possessed high accuracy and could be used to predict the urea hydrolysis rate. The simulation effect of the DE-K model was better than that of the BP-K model. The importance of the factors that affect urea hydrolysis was studied based on information on weight and the threshold value of DE-K model. The relative importance of temperature, nitrogen amount, and moisture content on urea hydrolysis was 65.87%, 25.69%, and 8.44%, respectively.
  • 关键词:soil urea hydrolysis rate;differential evolution algorithm;BP-K model;DE-K model;importanceINTRODUCTION
国家哲学社会科学文献中心版权所有