首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Adaptive Target Birth Intensity for ET-PHD Filter
  • 本地全文:下载
  • 作者:Lu Miao ; Xin-xi Feng ; Luo-jia Chi
  • 期刊名称:MATEC Web of Conferences
  • 电子版ISSN:2261-236X
  • 出版年度:2018
  • 卷号:176
  • DOI:10.1051/matecconf/201817603010
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:An adaptive tracking algorithm based on Extended target Probability Hypothesis Density (ETPHD) filter is proposed for extended target tracking problem with priori unknown target birth intensity.The algorithm is implemented by gaussian mixture, where the target birth intensity is generated by measurement-driven, and the persistent and the newborn targets intensity are respectively predicted and updated. The simulation results show that the proposed algorithm improves the performance of the probability hypothesis density filter in the extended target tracking.
国家哲学社会科学文献中心版权所有