摘要:The vertical profiles of phosphate, total CO"2 and oxygen/hydrogen sulphide were determined in the deep water of the Gotland Sea during March 2003 to July 2006 with a temporal resolution of 2-3 months. This time span included the shift from anoxic to oxic conditions resulting from a water renewal event, as well as the transition back to anoxic waters during the subsequent two-year stagnation period. The data from depths below 150m were used to identify and quantify phosphate release and removal processes. The relationship between the total CO"2 generated by mineralization (C"T"," "m"i"n) and the PO"4 concentrations indicated that the initial decrease in the phosphate concentrations after the inflow of oxygen-rich water was mainly a dilution effect. Only about one third of the PO"4 removal was a consequence of the precipitation of insoluble iron-3-hydroxo-phosphates (Fe-P), which occurred slowly at the sediment surface under oxic conditions. From the C"T"," "m"i"n/PO"4 ratios it was also concluded that the formation of Fe-P was reversed during the later phase of the stagnation, when the redoxcline approached a depth of 150m. A phosphate mass balance was performed for four deep water sub-layers in order to quantify the dissolution of Fe-P during the stagnation period and thus to estimate the amount of Fe-P deposited during the last inflow of oxygen-rich water. A value of about 50mmol-P m^-^2 was found, which refers to the specific biogeochemical conditions during the change from anoxic to oxic conditions that preceded the stagnation period.
关键词:Phosphate ; Anoxia ; Eutrophication ; Total CO"2