摘要:Oat hull fibre reinforced polypropylene- (PP-)/polylactide- (PLA-) based biocomposites were fabricated and their process engineering and performances were evaluated. The effect of ethylene propylene-g-maleic anhydride (EP-g-Ma) compatibilizer on mechanical properties of 30 wt% oat hull reinforced PP/PLA (90/10) blend composites was investigated. Thermal degradation parameters of the oat hull fibre were determined using thermogravimetric analysis. The effect of fibre reinforcement on crystallinity of oat hull fibre reinforced PP/PLA composites was studied by differential scanning calorimetry (DSC). Thermomechanical properties of the composites were analyzed by dynamic mechanical analyzer (DMA). The interfacial bonding between the fibre and the matrix was examined using scanning electron microscope (SEM). Significant improvement in tensile strength (40%) and flexural strength (46%) was observed with the addition of EP-g-Ma compatibilizer. DSC analysis of oat hull fibre reinforced composites showed an increase in the crystallization temperature (Tc) due to the nucleation effect of oat hull fibre. DMA results revealed that the storage modulus of PP/PLA/Oat hull fibre composites was higher compared to PP/PLA blend throughout the investigated range of temperature.