摘要:The purpose of this study was aimed at the evaluation of the mechanism of magnetic finishing with gel abrasive (MFGA), during which the performance of MFGA was compared to that of magnetic abrasive finishing (MAF). Of importance is that MFGA performs better than MAF based on the polishing-efficiency criterion. Silicone gels, however, are semisolid polymer gels with deforming properties that are temperature dependent, ultimately influencing significantly the polishing efficiency in MFGA. Therefore, taking as examples cylindrical rods which were polished using silicone gels with different plasticities to determine the corresponding temperatures of abrasive media in the working area, this study evaluated the MFGA mechanism to elucidate the properties of silicone gels and attain both the finished effect and effective gel abrasives in MFGA to produce a highly efficient polished surface. Next, circulating effects of abrasive media were identified to ensure the efficiency in MFGA and establish the relation between the concentrations of abrasive media and circulating effects in the working area. Experimental results show that silicone gels with low plasticity produce high temperature of abrasive media in MFGA; high temperature of abrasive medium makes excellent circulating effects in the working area, inducing high material removal and fine surface roughness.