首页    期刊浏览 2025年01月06日 星期一
登录注册

文章基本信息

  • 标题:High frequency impulse ground penetrating radar application in assessment of interlayer connections
  • 本地全文:下载
  • 作者:Jacek Sudyka ; Lech Krysiński ; Adam Zofka
  • 期刊名称:MATEC Web of Conferences
  • 电子版ISSN:2261-236X
  • 出版年度:2018
  • 卷号:163
  • DOI:10.1051/matecconf/201816302005
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Ground Penetrating Radar (GPR) technique is commonly used in the nondestructive evaluation of pavement structures. In particular, this method is used to estimate thicknesses of pavement layers as well as it can be utilized in advanced studies of pavement structures. The device presented in this paper comprise the high frequency impulse antennas that allow for investigating the interlayer zones in terms of their electromagnetic properties (e.g. dielectric constant). In some cases these electromagnetic responses can be suitable in the assessment of layer bonding in the pavement structure. This paper discusses the assessment of the quality of asphalt pavement interlayer bonding with the use of high frequency GPR techniques. The preliminary laboratory measurements were performed using an impulse antenna in the zero-offset configuration combined with the large-scale models simulating an idealized horizontal delamination. These measurements allowed to estimate the antenna sensitivity to detect interlayer connection under dry and wet conditions. Analysis of collected results led to formulating practical conclusions regarding critical limitations of the measuring system and adequate methods of signal processing and interpretation.The field investigations consisted of the GPR measurements along selected road sections and collection of the core samples at the locations associated with the specific reflexes. Inspection of the cores provided some real insights into the structure of different delaminations associated with characteristic reflexes. Analysis showed the reflection properties are able to expresses some important features of the interlayer zone, such as delaminations, presence of alien material at the interface, insufficient compaction occurring at the base of layer, and water penetration.
国家哲学社会科学文献中心版权所有