首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Hydrogen effect on the fatigue behavior of LBM Inconel 718
  • 本地全文:下载
  • 作者:Simon Puydebois ; Abdelali Oudriss ; Pierre Bernard
  • 期刊名称:MATEC Web of Conferences
  • 电子版ISSN:2261-236X
  • 出版年度:2018
  • 卷号:165
  • DOI:10.1051/matecconf/201816502010
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:For several years, Inconel 718 made by Laser Beam Melting (LBM) has been used for components of the Ariane propulsion systems manufactured by ArianeGroup. In the aerospace field, many components of space engines are used under hydrogen environment. The risk of hydrogen embrittlement (HE) can be therefore a first order problem. Consequently, to improve the HE sensitivity of LBM Inconel 718, a systematic approach needs to be developed to characterize the microstructure at different scales and its interaction with hydrogen. This study addresses the impact of gaseous hydrogen on the material mechanical behavior under fatigue loadings. In a first step, the low cycle fatigue behavior under 300 bar of hydrogen gas has been evaluated with specimen loaded at a constant load ratio of R=0.1 and a frequency of 0.5 Hz. A reduction in the cycle number of fracture is shown. This reduction of fatigue life is a consequence of the impact of hydrogen damage processes. The impact of hydrogen is evaluated at the stages of crack initiation, crack propagation. These results are discussed in relation with the hydrogen embrittlement mechanisms and particularly in terms of hydrogen / plasticity interactions. To achieve this, the fracture surface morphology was first examined using scanning electron microscopy and second samples near the fracture surface were extracted using Focused-Ion Beam machining from regions containing striation. The main result observed is a reduction of the size of dislocation organization in relation with a decrease of the striation distance.
国家哲学社会科学文献中心版权所有