首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Inapproximability of Vertex Cover and Independent Set in Bounded Degree Graphs
  • 本地全文:下载
  • 作者:Per Austrin ; Subhash Khot ; Muli Safra
  • 期刊名称:Theory of Computing
  • 印刷版ISSN:1557-2862
  • 电子版ISSN:1557-2862
  • 出版年度:2011
  • 卷号:7
  • 页码:27-43
  • DOI:10.4086/toc.2011.v007a003
  • 语种:English
  • 出版社:University of Chicago
  • 摘要:We study the inapproximability of Vertex Cover and Independent Seton degree-$d$ graphs. We prove that: Vertex Cover is Unique Games-hard to approximate within a factor $2 - (2+o_d(1)) \frac{ \log\log d}{ \log d}$. This exactly matches the algorithmic result of Halperin (SICOMP 2002) up to the $o_d(1)$ term. Independent Set is Unique Games-hard to approximate within a factor $O (d/\log^2 d)$.This improves the $d/\log^{O(1)}(d)$ Unique Games hardness result of Samorodnitsky and Trevisan (STOC'06). Additionally, our proof does not rely on the construction of a query-efficient PCP.
  • 关键词:vertex cover; independent set; bounded degree; hardness; approximation; Unique Games Conjecture
国家哲学社会科学文献中心版权所有