首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Influence of the biomechanical variables of the gait cycle in running economy. [Influencia de variables biomecánicas del ciclo de paso en la economía de carrera].
  • 本地全文:下载
  • 作者:Jordan Santos-Concejero ; Cristina Granados ; Jon Irazusta
  • 期刊名称:RICYDE. Revista Internacional de Ciencias del Deporte. doi:10.5232/ricyde
  • 印刷版ISSN:1885-3137
  • 出版年度:2014
  • 卷号:10
  • 期号:36
  • 页码:95-108
  • 语种:English
  • 出版社:Ramón Cantó Alcaraz (Publisher)
  • 摘要:The aim of this study was to investigate the relationships between biomechanical variables and running economy (RE). Eleven recreational (RR) and 14 well-trained runners (WT) completed 4 min stages on a treadmill at different speeds. During the test, biomechanical variables such as ground contact time ( tc ), swing time (tsw), stride length, frequency and angle and the length of the different subphases of ground contact were calculated using an optical measurement system. VO2 was measured in order to calculate RE. The WT runners were more economical than the RR at all speeds and presented lower tc, higher tsw , longer strides, lower stride frequencies and higher stride angles ( P<0.05 ). Similarly, the WT runners experienced a later propulsion subphase than the RR runners ( P<0.05 ). RE was positively related to tc , stride frequency and 10-km race pace, whereas it was negatively related to tsw , stride length, stride angle and the propulsive subphase. Our results suggest that running patterns characterized by longer stride lengths and higher stride angles, lower stride frequencies and tc , higher tsw and later propulsion suphases may enable an efficient energy use per stride. Resumen El objetivo de este estudio fue el investigar las relaciones entre diferentes variables biomecánicas y la economía de carrera (RE). Once atletas populares (RR) y 14 atletas altamente entrenados (WT) completaron estadios de 4 min en tapiz rodante a diferentes velocidades. Durante el test, el tiempo de contacto ( tc ) y de vuelo ( tsw ), la longitud, frecuencia y ángulo de zancada y la duración de las diferentes sub-fases del tiempo de contacto se calcularon usando un sistema óptico. Se midió el VO2 para calcular la RE. Los atletas WT fueron más económicos que los RR y presentaron menores tc, mayores tsw, zancadas más largas, frecuencias más bajas y ángulos mayores ( P<0.05 ). Además, los atletas WT experimentaron la sub-fase propulsiva más tarde que los RR (P<0.05 ). La RE estuvo positivamente relacionada con el tc , la frecuencia de zancada y el ritmo de 10 km, mientras que estuvo negativamente relacionada con el tsw , longitud y ángulo de zancada y la sub-fase propulsiva. Estos resultados sugieren que una biomecánica caracterizada por zancadas más largas, ángulos de zancada y tsw mayores, menores frecuencias y tc , y sub-fases propulsivas más tardías pueden favorecer un uso energético más eficiente. http://dx.doi.org/10.5232/ricyde2014.03601 --------------------------------------------------------------------- References/referencias Anderson, T. (1996). Biomechanics and running economy. Sports Medicine , 22, 76-89. http://dx.doi.org/10.2165/00007256-199622020-00003 Bergh, U.; Sjödin, B.; Forsberg, A., & Svedenhag, J. (1991). The relationship between body mass and oxygen uptake during running in humans. Medicine & Science in Sports & Exercise , 23, 205-211. http://dx.doi.org/10.1249/00005768-199102000-00010 Bosco, C.; Montanari, G.; Ribacchi, R.; Giovenali, P.; Latteri, F.; Lachelli, G.; Faina, M.; Colli, R.; Dal Monte, A., & La Rosa, M. (1987). Relationship between the efficiency of muscular work during jumping and the energetic. European Journal of Applied Physiology and Occupational Physiology, 56, 138-143. http://dx.doi.org/10.1007/BF00640636 Cavanagh, P.R., & Williams, K.R. (1982). The effect of stride length variation on oxygen uptake during distance running. Medicine & Science in Sports & Exercise , 14, 30-35. http://dx.doi.org/10.1249/00005768-198201000-00006 Chapman, R.F.; Laymon, A.S.; Wilhite, D.P.; McKenzie, J.M.; Tanner, D.A., & Stager, J.M. (2012). Ground contact time as an indicator of metabolic cost in elite distance runners. Medicine & Science in Sports & Exercise, 4, 917-92. http://dx.doi.org/10.1249/MSS.0b013e3182400520 Cheng, B.; Kuipers, H.; Snyder, A.C.; Keizer, H.A.; Jeukendrup, A., & Hesselink, M. (1992). A new approach for the determination of ventilatory and lactate thresholds . International Journal of Sports Medicine, 13, 518-522. http://dx.doi.org/10.1055/s-2007-1021309 Chumanov, E.S.; Heiderscheit, B.C., & Thelen, D.G. (2011). Hamstring musculotendon dynamics during stance and swing phases of high-speed running. Medicine & Science in Sports & Exercise , 43, 525-532. http://dx.doi.org/10.1249/MSS.0b013e3181f23fe8 Debaere, S.; Jonkers, I., & Delecluse, C. (2013). The contribution of step characteristics to sprint running performance in high-level male and female athletes. Journal of Strength & Conditioning Research, 27, 116-124. http://dx.doi.org/10.1519/JSC.0b013e31825183ef Di Pampero, P.E.; Atchou, G.; Brückner, J.C., & Moia, C. (1986). The energetics of endurance running. European Journal of Applied Physiology and Occupational Physiology, 55, 259-266. http://dx.doi.org/10.1007/BF02343797 Duggan, S.A., & Bhat, K.P. (2005). Biomechanics and Analysis of Running Gait. Physical Medicine & Rehabilitation Clinics of North America, 16, 603–621. http://dx.doi.org/10.1016/j.pmr.2005.02.007 Foster, C., & Lucia, A. (2007). Running economy: the forgotten factor in elite performance. Sports Medicine , 37, 316-319. http://dx.doi.org/10.2165/00007256-200737040-00011 Helgerud, J.; Engen, L.C.; Wisloff, U., & Hoff, J. (2001). Aerobic endurance training improves soccer performance. Medicine & Science in Sports & Exercise , 33, 1925-1931. http://dx.doi.org/10.1097/00005768-200111000-00019 Helgerud, J.; Støren, O., & Hoff, J. (2010). Are there differences in running economy at different speeds for well-trained distance runners? European Journal of Applied Physiology, 108, 1099-1105. http://dx.doi.org/10.1007/s00421-009-1218-z Hopkins, W.G.; Marshall, S.W.; Batterham, A.M., & Hanin J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise , 41, 3-13. http://dx.doi.org/10.1249/MSS.0b013e31818cb278 Karp, J.R. (2010). Strength Training For Distance Running: A Scientific Perspective. Strength and Conditioning Journal, 32, 83‐86. http://dx.doi.org/10.1519/SSC.0b013e3181df195b Krahenbuhl, G.S., & Pangrazi, R.P. (1983). Characteristics associated with running performance in young boys. Medicine & Science in Sports & Exercise , 15, 486-490. http://dx.doi.org/10.1249/00005768-198315060-00008 Kram, R., & Taylor, C.R. (1990). Energetics of running: a new perspective. Nature, 346, 265-267. http://dx.doi.org/10.1038/346265a0 Kyröläinen, H.; Belli, A., & Komi, P.V. (2001). Biomechanical factors affecting running economy. Medicine & Science in Sports & Exercise , 33, 1330-1337. http://dx.doi.org/10.1097/00005768-200108000-00014 Levine, B.D. (2008). VO2max: what do we know, and what do we still need to know? Journal of Physiology , 586, 25-34. http://dx.doi.org/10.1113/jphysiol.2007.147629 Lucia, A.; Esteve-Lanao, J.; Oliván, J.; Gómez-Gallego, F.; San Juan, A.F.; Santiago, C.; Pérez, M.; Chamorro-Viña, C., & Foster, C. (2006). Physiological characteristics of the best Eritrean runners-exceptional running economy. Applied Physiology, Nutrition and Metabolism , 31, 530-540. http://dx.doi.org/10.1139/h06-029 Maldonado, S.; Mujika, I., & Padilla, S. (2002). Influence of body mass and height on the energy cost of running in highly trained middle- and long-distance runners. International Journal of Sports Medicine, 23, 268-272. http://dx.doi.org/10.1055/s-2002-29083 Mayhew, J.L. (1997). Oxygen cost and energy expenditure of running in trained runners. British Journal of Sports Medicine, 11, 116–121. http://dx.doi.org/10.1136/bjsm.11.3.116 Novacheck, T.F. (1998). Review paper: the biomechanics of running. Gait & Posture, 7, 77–95. http://dx.doi.org/10.1016/S0966-6362(97)00038-6 Nummela, A.; Keränen, T., & Mikkelsson, L. (2007). Factors related to top running speed and economy. International Journal of Sports Medicine, 28, 655–661. http://dx.doi.org/10.1055/s-2007-964896 Pate, R.R.; Macera, C.A.; Bailey, S.P.; Bartoli, W.P., & Powell, K.E. (1992). Physiological, anthropometric, and training correlates of running economy. Medicine & Science in Sports & Exercise , 24, 1128-1133. http://dx.doi.org/10.1249/00005768-199210000-00010 Saunders, P.U.; Pyne, D.B.; Telford, R.D., & Hawley, J.A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine, 34, 456-485. http://dx.doi.org/10.2165/00007256-200434070-00005 Yoshida, T. (1984). Effect of exercise duration during incremental exercise on the determination of anaerobic threshold and the onset of blood lactate accumulation. European Journal of Applied Physiology & Occupational Physiol ogy , 53, 196-199. http://dx.doi.org/10.1007/BF00776589
  • 其他摘要:The aim of this study was to investigate the relationships between biomechanical variables and running economy (RE). Eleven recreational (RR) and 14 well-trained runners (WT) completed 4 min stages on a treadmill at different speeds. During the test, biomechanical variables such as ground contact time (tc), swing time (tsw), stride length, frequency and angle and the length of the different subphases of ground contact were calculated using an optical measurement system. VO2 was measured in order to calculate RE. The WT runners were more economical than the RR at all speeds and presented lower tc, higher tsw, longer strides, lower stride frequencies and higher stride angles (P<0.05). Similarly, the WT runners experienced a later propulsion subphase than the RR runners (P<0.05). RE was positively related to tc, stride frequency and 10-km race pace, whereas it was negatively related to tsw, stride length, stride angle and the propulsive subphase. Our results suggest that running patterns characterized by longer stride lengths and higher stride angles, lower stride frequencies and tc, higher tsw and later propulsion suphases may enable an efficient energy use per stride. ResumenEl objetivo de este estudio fue el investigar las relaciones entre diferentes variables biomecánicas y la economía de carrera (RE). Once atletas populares (RR) y 14 atletas altamente entrenados (WT) completaron estadios de 4 min en tapiz rodante a diferentes velocidades. Durante el test, el tiempo de contacto (tc) y de vuelo (tsw), la longitud, frecuencia y ángulo de zancada y la duración de las diferentes sub-fases del tiempo de contacto se calcularon usando un sistema óptico. Se midió el VO2 para calcular la RE. Los atletas WT fueron más económicos que los RR y presentaron menores tc, mayores tsw, zancadas más largas, frecuencias más bajas y ángulos mayores (P<0.05). Además, los atletas WT experimentaron la sub-fase propulsiva más tarde que los RR (P<0.05). La RE estuvo positivamente relacionada con el tc, la frecuencia de zancada y el ritmo de 10 km, mientras que estuvo negativamente relacionada con el tsw, longitud y ángulo de zancada y la sub-fase propulsiva. Estos resultados sugieren que una biomecánica caracterizada por zancadas más largas, ángulos de zancada y tsw mayores, menores frecuencias y tc, y sub-fases propulsivas más tardías pueden favorecer un uso energético más eficiente.http://dx.doi.org/10.5232/ricyde2014.03601---------------------------------------------------------------------References/referenciasAnderson, T. (1996). Biomechanics and running economy. Sports Medicine, 22, 76-89. http://dx.doi.org/10.2165/00007256-199622020-00003Bergh, U.; Sjödin, B.; Forsberg, A., & Svedenhag, J. (1991). The relationship between body mass and oxygen uptake during running in humans. Medicine & Science in Sports & Exercise, 23, 205-211. http://dx.doi.org/10.1249/00005768-199102000-00010Bosco, C.; Montanari, G.; Ribacchi, R.; Giovenali, P.; Latteri, F.; Lachelli, G.; Faina, M.; Colli, R.; Dal Monte, A., & La Rosa, M. (1987). Relationship between the efficiency of muscular work during jumping and the energetic. European Journal of Applied Physiology and Occupational Physiology, 56, 138-143. http://dx.doi.org/10.1007/BF00640636Cavanagh, P.R., & Williams, K.R. (1982). The effect of stride length variation on oxygen uptake during distance running. Medicine & Science in Sports & Exercise, 14, 30-35. http://dx.doi.org/10.1249/00005768-198201000-00006Chapman, R.F.; Laymon, A.S.; Wilhite, D.P.; McKenzie, J.M.; Tanner, D.A., & Stager, J.M. (2012). Ground contact time as an indicator of metabolic cost in elite distance runners. Medicine & Science in Sports & Exercise, 4, 917-92. http://dx.doi.org/10.1249/MSS.0b013e3182400520Cheng, B.; Kuipers, H.; Snyder, A.C.; Keizer, H.A.; Jeukendrup, A., & Hesselink, M. (1992). A new approach for the determination of ventilatory and lactate thresholds. International Journal of Sports Medicine, 13, 518-522. http://dx.doi.org/10.1055/s-2007-1021309Chumanov, E.S.; Heiderscheit, B.C., & Thelen, D.G. (2011). Hamstring musculotendon dynamics during stance and swing phases of high-speed running. Medicine & Science in Sports & Exercise, 43, 525-532. http://dx.doi.org/10.1249/MSS.0b013e3181f23fe8Debaere, S.; Jonkers, I., & Delecluse, C. (2013). The contribution of step characteristics to sprint running performance in high-level male and female athletes. Journal of Strength & Conditioning Research, 27, 116-124. http://dx.doi.org/10.1519/JSC.0b013e31825183efDi Pampero, P.E.; Atchou, G.; Brückner, J.C., & Moia, C. (1986). The energetics of endurance running. European Journal of Applied Physiology and Occupational Physiology, 55, 259-266. http://dx.doi.org/10.1007/BF02343797Duggan, S.A., & Bhat, K.P. (2005). Biomechanics and Analysis of Running Gait. Physical Medicine & Rehabilitation Clinics of North America, 16, 603–621. http://dx.doi.org/10.1016/j.pmr.2005.02.007Foster, C., & Lucia, A. (2007). Running economy: the forgotten factor in elite performance. Sports Medicine, 37, 316-319. http://dx.doi.org/10.2165/00007256-200737040-00011Helgerud, J.; Engen, L.C.; Wisloff, U., & Hoff, J. (2001). Aerobic endurance training improves soccer performance. Medicine & Science in Sports & Exercise, 33, 1925-1931. http://dx.doi.org/10.1097/00005768-200111000-00019Helgerud, J.; Støren, O., & Hoff, J. (2010). Are there differences in running economy at different speeds for well-trained distance runners? European Journal of Applied Physiology, 108, 1099-1105. http://dx.doi.org/10.1007/s00421-009-1218-zHopkins, W.G.; Marshall, S.W.; Batterham, A.M., & Hanin J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41, 3-13. http://dx.doi.org/10.1249/MSS.0b013e31818cb278Karp, J.R. (2010). Strength Training For Distance Running: A Scientific Perspective. Strength and Conditioning Journal, 32, 83‐86. http://dx.doi.org/10.1519/SSC.0b013e3181df195bKrahenbuhl, G.S., & Pangrazi, R.P. (1983). Characteristics associated with running performance in young boys. Medicine & Science in Sports & Exercise, 15, 486-490. http://dx.doi.org/10.1249/00005768-198315060-00008Kram, R., & Taylor, C.R. (1990). Energetics of running: a new perspective. Nature, 346, 265-267. http://dx.doi.org/10.1038/346265a0Kyröläinen, H.; Belli, A., & Komi, P.V. (2001). Biomechanical factors affecting running economy. Medicine & Science in Sports & Exercise, 33, 1330-1337. http://dx.doi.org/10.1097/00005768-200108000-00014Levine, B.D. (2008). VO2max: what do we know, and what do we still need to know? Journal of Physiology, 586, 25-34. http://dx.doi.org/10.1113/jphysiol.2007.147629Lucia, A.; Esteve-Lanao, J.; Oliván, J.; Gómez-Gallego, F.; San Juan, A.F.; Santiago, C.; Pérez, M.; Chamorro-Viña, C., & Foster, C. (2006). Physiological characteristics of the best Eritrean runners-exceptional running economy. Applied Physiology, Nutrition and Metabolism, 31, 530-540. http://dx.doi.org/10.1139/h06-029Maldonado, S.; Mujika, I., & Padilla, S. (2002). Influence of body mass and height on the energy cost of running in highly trained middle- and long-distance runners. International Journal of Sports Medicine, 23, 268-272. http://dx.doi.org/10.1055/s-2002-29083Mayhew, J.L. (1997). Oxygen cost and energy expenditure of running in trained runners. British Journal of Sports Medicine, 11, 116–121. http://dx.doi.org/10.1136/bjsm.11.3.116Novacheck, T.F. (1998). Review paper: the biomechanics of running. Gait & Posture, 7, 77–95. http://dx.doi.org/10.1016/S0966-6362(97)00038-6Nummela, A.; Keränen, T., & Mikkelsson, L. (2007). Factors related to top running speed and economy. International Journal of Sports Medicine, 28, 655–661. http://dx.doi.org/10.1055/s-2007-964896Pate, R.R.; Macera, C.A.; Bailey, S.P.; Bartoli, W.P., & Powell, K.E. (1992). Physiological, anthropometric, and training correlates of running economy. Medicine & Science in Sports & Exercise, 24, 1128-1133. http://dx.doi.org/10.1249/00005768-199210000-00010Saunders, P.U.; Pyne, D.B.; Telford, R.D., & Hawley, J.A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine, 34, 456-485. http://dx.doi.org/10.2165/00007256-200434070-00005Yoshida, T. (1984). Effect of exercise duration during incremental exercise on the determination of anaerobic threshold and the onset of blood lactate accumulation. European Journal of Applied Physiology & Occupational Physiology, 53, 196-199. http://dx.doi.org/10.1007/BF00776589
  • 关键词:ground contact;stride angle; swing time;stride length;stride frequency;Tiempo de contacto;ángulo de zancada;tiempo de vuelo;longitud de zancada;frecuencia de zancada.;ground contact;stride angle; swing time;stride length;stride frequency;Tiempo de contacto;ángulo de zancada;tiempo de vuelo;longitud de zancada;frecuencia de zancada.
  • 其他关键词:ground contact; stride angle; swing time; stride length; stride frequency; Tiempo de contacto; ángulo de zancada; tiempo de vuelo; longitud de zancada; frecuencia de zancada.
国家哲学社会科学文献中心版权所有