首页    期刊浏览 2025年01月06日 星期一
登录注册

文章基本信息

  • 标题:Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain
  • 本地全文:下载
  • 作者:Pragnesh Mistry ; Michelle H. W. Laird ; Ryan S. Schwarz
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2015
  • 卷号:112
  • 期号:17
  • 页码:5455-5460
  • DOI:10.1073/pnas.1422576112
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceExcess Toll-like receptor 2 (TLR2) signaling has been implicated in numerous inflammatory diseases, yet there is no TLR2 inhibitor licensed for human use. Using computer-aided drug design (CADD), we identified a compound, C16H15NO4 (C29), and a derivative, ortho-vanillin, that inhibit TLR2 signaling in vitro and in vivo. Our findings also revealed unexpected differences between TLR2/1 and TLR2/6 signaling in mice vs. humans. Importantly, our data provide proof of principle that the CADD-targeted BB loop pocket residues are critical for TLR2 signaling and may be targeted therapeutically. Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors.
  • 关键词:small molecule inhibitor ; BB loop ; TLR2 pocket ; CADD
国家哲学社会科学文献中心版权所有