期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2015
卷号:112
期号:15
页码:E1946-E1955
DOI:10.1073/pnas.1501989112
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceAn important challenge for improving cell-based approaches for Parkinson's disease is the development of techniques that facilitate greater standardization of the donor material. This report describes the enrichment of transplantable progenitors for dopamine neurons from the ventral mesencephalon based on targeting of transmembrane proteins. It is an important step toward the development of clinically relevant techniques that allow for greater standardization of cell preparations used in transplantation and potentially, more predictable clinical outcomes. The findings are highly relevant for current efforts to develop stem cell-based therapies for Parkinson's disease, where current techniques yield mixed cell populations that may contain unwanted cell types and thus, would benefit from a cell selection step prior to grafting. An important challenge for the continued development of cell therapy for Parkinson's disease (PD) is the establishment of procedures that better standardize cell preparations for use in transplantation. Although cell sorting has been an anticipated strategy, its application has been limited by lack of knowledge regarding transmembrane proteins that can be used to target and isolate progenitors for midbrain dopamine (mDA) neurons. We used a "FACS-array" approach to identify 18 genes for transmembrane proteins with high expression in mDA progenitors and describe the utility of four of these targets (Alcam, Chl1, Gfra1, and Igsf8) for isolating mDA progenitors from rat primary ventral mesencephalon through flow cytometry. Alcam and Chl1 facilitated a significant enrichment of mDA neurons following transplantation, while targeting of Gfra1 allowed for robust separation of dopamine and serotonin neurons. Importantly, we also show that mDA progenitors isolated on the basis of transmembrane proteins are capable of extensive, functional innervation of the host striatum and correction of motor impairment in a unilateral model of PD. These results are highly relevant for current efforts to establish safe and effective stem cell-based procedures for PD, where clinical translation will almost certainly require safety and standardization measures in order to deliver well-characterized cell preparations.