首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Extremum Seeking-based Iterative Learning Model Predictive Control (ESILC-MPC)
  • 本地全文:下载
  • 作者:Anantharaman Subbaraman ; Mouhacine Benosman
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:13
  • 页码:193-198
  • DOI:10.1016/j.ifacol.2016.07.950
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, we study a tracking control problem for linear time-invariant systems with model parametric uncertainties under input and states constraints. We apply the idea of modular design introduced in Benosman [2014], to solve this problem in the model predictive control (MPC) framework. We propose to design an MPC with input-to-state stability (ISS) guarantee, and complement it with an extremum seeking (ES) algorithm to iteratively learn the model uncertainties. The obtained MPC algorithms can be classified as iterative learning control (ILC)-MPC.
国家哲学社会科学文献中心版权所有