摘要:AbstractThis paper discusses methodological problems of standard errors and treatment effects. First, heteroskedasticity- and cluster-robust estimates are considered as well as problems with Bernoulli distributed regressors, outliers and partially identified parameters. Second, procedures to determine treatment effects are analyzed. Four principles are in the focus: difference-in-differences estimators, matching procedures, treatment effects in quantile regression analysis and regression discontinuity approaches. These methods are applied to Cobb-Douglas functions using IAB establishment panel data.Different heteroskedasticity-consistent procedures lead to similar results of standard errors. Cluster-robust estimates show evident deviates. Dummies with a mean near 0.5 have a smaller variance of the coefficient estimates than others. Not all outliers have a strong influence on significance. New methods to handle the problem of partially identified parameters lead to more efficient estimates.The four discussed treatment procedures are applied to the question whether company-level pacts affect the output. In contrast to unconditional difference-in-differences and to estimates without matching the company-level effect is positive but insignificant if conditional difference-in-differences, nearest-neighbor or Mahalanobis metric matching is applied. The latter result has to be specified under quantile treatment effects analysis. The higher the quantile the higher is the positive company-level pact effect and there is a tendency from insignificant to significant effects. A sharp regression discontinuity analysis shows a structural break at a probability of 0.5 that a company-level pact exists. No specific effect of the Great Recession can be detected. Fuzzy regression discontinuity estimates reveal that the company-level pact effect is significantly lower in East than in West Germany.
其他摘要:DeZusammenfassungDieser Beitrag diskutiert Möglichkeiten zur Schätzung von Standardfehlern und Kausaleffekten. Zunächst werden heteroskedastie- und gruppenrobuste Schätzungen für Standardfehler betrachtet sowie Auffälligkeitenund Probleme bei Dummy-Variablen als Regressoren, Ausreißern und nur partiell identifizierten Parametern erörtert. Danach geht es um Verfahren zur Bestimmung von Treatmenteffekten. Vier Prinzipien werden hierzuvorgestellt: Differenz-von-Differenzen-Schätzer, Matchingverfahren, Kausaleffekte in der Quantilsregressionsanalyse und Ansätze zur Bestimmung von Diskontinuitäten bei Regressionsschätzungen. Anwendungen erfolgen im zweiten Teil der Arbeit auf Cobb-Douglas-Produktionsfunktionen unter Verwendung von IAB-Betriebspaneldaten.Verschiedene heteroskedastiekonsistente Verfahren führen zu recht ähnlichen Ergebnissen bei den Standardfehlern. Clusterrobuste Schätzungen zeigen dagegen deutliche Abweichungen. Dummies als Regressoren mit einem Mittelwert in der Nähe von 0.5 weisen kleinere Varianzen der Koeffizienterschätzer auf als andere. Nicht alle Ausreißer haben einen nennenswerten Einfluss auf die Signifikanz. Neuere Methoden zur Behandlung des Problems von nur partiell identifizierten Parametern führen zu effizienteren Schätzungen.Die vier diskutierten Verfahren zur Bestimmung der Wirkungen von Maßnahmen werden auf das Problem, ob betriebliche Bündnisse einen signifikanten Einfluss auf den Produktionsoutput haben, angewandt. Im Gegensatz zu nicht konditionalen Differenz-von-Differenzen-Schätzern und Schätzern ohne Matching sind die Effekte betrieblicher Bündnisse bei bedingten Differenz-von-Differenzen- Schätzern und Matching-Verfahren zwar positiv, aber insignifikant. Diese Aussage ist auf Basis der Treatment-Quantilsanalysezu präzisieren. Je höher die Quantile sind, umso größer ist die Wirkung betrieblicher Bündnisse mit einer Tendenz von insignifikanten zu signifikanten Effekten. Die deterministische Regressionsanalyse mit Diskontinuitäten zeigt einen Strukturbruch bei Wahrscheinlichkeit 0.5, dass ein betriebliches Bündnis existiert. Es lassen sich keine spezifischen Effekte während der Rezession 2009 ausmachen. Schätzungen im Rahmen stochastischer Diskontinuitätsansätze offenbaren, dass die Wirkungen betrieblicher Bündnisse in Ostdeutschland signifikant niedriger ausfallen als in Westdeutschland.