首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Data-driven Estimation of Origin-Destination Demand and User Cost Functions for the Optimization of Transportation Networks
  • 本地全文:下载
  • 作者:Jing Zhang ; Sepideh Pourazarm ; Christos G. Cassandras
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:9680-9685
  • DOI:10.1016/j.ifacol.2017.08.2049
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn earlier work (Zhang et al., 2016) we used actual traffic data from the Eastern Massachusetts transportation network in the form of spatial average speeds and road segment flow capacities in order to estimate Origin-Destination (OD) flow demand matrices for the network. Based on a Traffic Assignment Problem (TAP) formulation (termed “forward problem”), in this paper we use a scheme similar to our earlier work to estimate initial OD demand matrices and then propose a new inverse problem formulation in order to estimate user cost functions. This new formulation allows us to efficiently overcome numerical difficulties that limited our prior work to relatively small subnetworks and, assuming the cost functions are available, to adjust the values of the OD demands accordingly so that the flow observations are as close as possible to the solutions of the forward problem. Finally, using the same actual traffic data from the Eastern Massachusetts transportation network, we quantify the Price of Anarchy (PoA) for a much larger network than that in Zhang et al. (2016).
  • 关键词:Keywordsoptimizationtransportation networkorigin-destination demand estimationtravel latency cost functiontraffic assignmentinverse variational inequalityprice of anarchy
国家哲学社会科学文献中心版权所有