首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Tuning the hyperparameters of the filter-based regularization method for impulse response estimation
  • 本地全文:下载
  • 作者:Anna Marconato ; Maarten Schoukens
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:12841-12846
  • DOI:10.1016/j.ifacol.2017.08.1934
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper discusses the use of a filter-based method for regularized impulse response modeling for linear time-invariant systems. The proposed method is a reformulation of the Bayesian, kernel based impulse response modeling approaches. The filter interpretation of the regularization cost function allows one to develop an intuitive framework to model a wide range of systems with different properties in a flexible way. Two hyperparameter selection techniques, based on Cross Validation and on Marginal Likelihood Maximization are presented. The proposed methods are tested on Monte Carlo simulation examples and on a real robotics problem. The results are compared with the ones obtained with the kernel-based methods based on the DC and TC kernels.
国家哲学社会科学文献中心版权所有