首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Approximate inference of nonparametric Hammerstein models
  • 本地全文:下载
  • 作者:Riccardo S. Risuleo ; Giulio Bottegal ; Håkan Hjalmarsson
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:8333-8338
  • DOI:10.1016/j.ifacol.2017.08.1555
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe propose a method for nonparametric identification of Hammerstein models with Gaussian-process models for the impulse response of the linear block and for the input nonlinearity. Interpreting the Gaussian-processes as prior distributions, we can estimate the unknowns using the posterior means given the data. To estimate the hyperparameters we set up an iterative scheme, reminiscent of the expectation-maximization method, where the posterior expectation of the complete likelihood is iteratively maximized. In the Hammerstein case, the posterior density is intractable because, in general, it does not admit a closed form expression. In this work, we propose two approximation approaches to estimate the posterior mean. In the first, we make a particle approximation of the posterior using Markov Chain Monte Carlo. In the second, we use a variational Bayes approach with a mean-field hypothesis. We validate the proposed methods on synthetic datasets of Hammerstein systems.
  • 关键词:KeywordsNonlinear system identificationBayesian methodsNonparametric methods
国家哲学社会科学文献中心版权所有