首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Secure Dynamic State Estimation by Decomposing Kalman Filter
  • 本地全文:下载
  • 作者:Xinghua Liu ; Yilin Mo ; Emanuele Garone
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:7351-7356
  • DOI:10.1016/j.ifacol.2017.08.1491
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe consider the problem of estimating the state of a linear time-invariant Gaussian system in the presence of sparse integrity attacks. The attacker can control p out of m sensors and arbitrarily change the measurements. Under mild assumptions, we can decompose the optimal Kalman estimate as a weighted sum of local state estimates, each of which is derived using only the measurements from a single sensor. Furthermore, we propose a convex optimization based approach, instead of the weighted sum approach, to combine the local estimate into a more secure state estimate. It is shown that our proposed estimator coincides with the Kalman estimator with certain probability when all sensors are benign, and we provide a sufficient condition under which the estimator is stable against the (p, m)-sparse attack when p sensors are compromised. A numerical example is provided to illustrate the performance of the proposed state estimation scheme.
  • 关键词:KeywordsCyber-physical systemsState estimationSecurityOptimization
国家哲学社会科学文献中心版权所有