首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Robust Identification of Switching Markov ARX Models Using EM Algorithm * * This work is supported in part by NSERC and AITF.
  • 本地全文:下载
  • 作者:Lei Fan ; Hariprasad Kodamana ; Biao Huang
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:9772-9777
  • DOI:10.1016/j.ifacol.2017.08.878
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractOutliers are one of the common factors that affect the quality of routine operational data. In this work, we propose a robust identification approach for the Switched Markov Autoregressive eXogeneous (SMARX) system to deal with outliers. The robust identification problem is formulated by imposing Student’s t-distribution to the noise model. The Expectation-Maximization algorithm is adopted to estimate the parameters of both the continuous dynamics described by local ARX models and discrete dynamics described by Hidden Markov Model. The advantages of the proposed approach are demonstrated through a numerical simulation.
  • 关键词:KeywordsHybridswitched systems modelingLPV systemsNonlinear system identificationHMMEM algorithmt-distribution
国家哲学社会科学文献中心版权所有