首页    期刊浏览 2025年01月19日 星期日
登录注册

文章基本信息

  • 标题:Bogie Fault Identification Based on EEMD Information Entropy and Manifold Learning
  • 本地全文:下载
  • 作者:Na Qin ; Yongkui Sun ; Pengju Gu
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:315-318
  • DOI:10.1016/j.ifacol.2017.08.052
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn order to realize high-speed train bogie’s fault intelligent identification by data driven method, this paper proposes a new fault diagnosis framework. The main idea of the framework is to use features of ensemble empirical mode decomposition entropy, to reduce the feature dimension by Isometric Feature Mapping Manifold Learning, and identify the faults using support vector machine. The proposed method increases the fault detection rate effectively. Experimental results verify that the new method increases the accuracy of fault detection rate of the bogie failure.
  • 关键词:KeywordsHigh speed trainfault recognitionempirical mode decomposition information entropyfeature extractionmanifold learning
国家哲学社会科学文献中心版权所有