首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Entrenamiento con restricción del flujo sanguíneo e hipertrofia muscular. [Blood flow restriction training and muscle hypertrophy].
  • 本地全文:下载
  • 作者:Carlos Reina-Ramos ; Raúl Domínguez
  • 期刊名称:RICYDE. Revista Internacional de Ciencias del Deporte. doi:10.5232/ricyde
  • 印刷版ISSN:1885-3137
  • 出版年度:2014
  • 卷号:10
  • 期号:38
  • 页码:366-382
  • 语种:Spanish
  • 出版社:Ramón Cantó Alcaraz (Publisher)
  • 摘要:El entrenamiento de fuerza orientado a aumentar la masa muscular se ha convertido en un objetivo común en programas de entrenamiento tanto en deportistas de alto rendimiento como en personas que realizan programas de actividad física con objetivo de mejorar su salud o calidad de vida. Generalmente, el trabajo de fuerza orientado hacia la hipertrofia muscular se ha asociado con la utilización de altas cargas de trabajo (70-85% de 1 RM). Actualmente, se ha propuesto que el entrenamiento de fuerza con cargas de tan solo el 20% de 1 RM realizadas en condiciones de restricción del flujo sanguíneo podría provocar incrementos en los niveles de fuerza y masa muscular similares a los observados al ejercitarse con cargas altas. Dado que ciertos colectivos podrían beneficiarse del empleo de bajas cargas en sus programas de entrenamiento orientados a incrementar la masa muscular, el objetivo del presente trabajo de revisión bibliográfica ha sido el de revisar en la literatura las evidencias que existen en torno a la efectividad del entrenamiento con restricción del flujo sanguíneo a la hora de provocar hipertrofia muscular. Abstract Strength training focuses on increasing muscle mass has become in a frequent target in training programs in both elite athletes and people performing physical activity programs to improve their health or quality of life. Generally, the resistance training oriented muscle hypertrophy has been associated with the use of high workloads (70-85% of 1RM). Currently, it has been proposed that the resistance training with loads of only 20% 1RM under conditions of restricted blood flow can induce increases in strength levels similar to resistance training with high intensities. Because certain groups could benefit from the use of low loads in their strength training programs designed to increase muscle mass, the objective of the present study was to review the literature on the existing evidence about the effectiveness of blood flow restriction training inducing muscle hypertrophy. http://dx.doi.org/10.5232/ricyde2014.03806 --------------------------------------------------------------------------- Referencias/references Aagaard, P.; Andersen, J.L.; Dyhre-Poulsen, P.; Leffers, A.M.; Wagner, A., Magnusson, S.P.; Halkjaer-Kristensen, J., & Simonsen, E.B. (2001). A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. The Journal of Physiology , 534(2), 613–623. http://dx.doi.org/10.1111/j.1469-7793.2001.t01-1-00613.x Abe, T.; Charles, F.; Kearns, & Sato, Y. (2005). Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. Journal of Applied Physiology , 100(5), 1460–1466. http://dx.doi.org/10.1152/japplphysiol.01267.2005 Abe T.; Kearns, C.F., & Sato, Y. (2006). Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. Journal of Applied Physiology , 100(5), 1460-1466. http://dx.doi.org/10.1152/japplphysiol.01267.2005 Abe T.; Fujita S.; Nakajima, T.; Sakamaki, M.; Ozaki, H.; Ogasawara, R.; Sugaya, M.; Kudo, M.; Kurano, M.; Yasuda, T.; Sato, Y.; Ohshima, H.; Mukai, C., & Ishii, N. (2010). Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2max in young men. Journal of Sports Science and Medicine , 9(3), 452-458 Abe, T.; Loenneke, J. P.; Fahs, C. A.; Rossow, L. M.; Thiebaud, R. S., & Bemben, M. G. (2012). Exercise intensity and muscle hypertrophy in blood flow–restricted limbs and non-restricted muscles: a brief review. Clinical Physiology and Functional Imaging , 32(4), 247–252. http://dx.doi.org/10.1111/j.1475-097X.2012.01126.x Álvarez, J.J.R.; López-Silvarrey, F.J.; Segovia Martínez, J.C.; Martínez Melen, H., y Legido-Arce, J.C. (2008). Rehabilitación del paciente con lesión del ligamento cruzado anterior de la rodilla (LCA). Revisión. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte , 8(29), 62-92. American College of Sports Medicine. (1998). Position stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Medicine and Science in Sports and Exercise , 30, 975–991. http://dx.doi.org/10.1097/00005768-199806000-00032 Booth, F. W., & Criswell D.S. (1997) Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures. International Journal of Sports Medicine , 18(4), 265–269. http://dx.doi.org/10.1055/s-2007-972723 Cermak, N.M.; Snijders, T.; McKay, B.R.; Parise, G.; Verdjik, L.B.; Tranopolsky, M.A.; Gibala, M., & Van Loon, L.J. (2013). Eccentric exercise increases satellite cell content in type II muscle fibers. Medicine and Science in Sports and Exercise , 45(2), 230-237. http://dx.doi.org/10.1249/MSS.0b013e318272cf47 Clark, B.C.; Manini, T.M.; Hoffman, R.L.; Williams, P.S.; Guiler, M.K.; Knutson, M.J.; McGlynn, M.L., & Kurshnick, M.R. (2011). Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scandinavian Journal of Medicine and Science in Sports , 21(5), 653-662. http://dx.doi.org/10.1111/j.1600-0838.2010.01100.x Colón, C.J.P.; Collado, P.S. y Cuevas, M.J. (2014). Beneficios del entrenamiento de fuerza para la prevención y tratamiento de la sarcopenia. Nutrición Hospitalaria , 29(5), 979-988. Csapo, R.; Alegre, L.M., & Baron, R. (2011) Time kinetics of acute changes in muscle architecture in response to resistance exercise. Journal of Science and. Medicine in Sports , 14(3), 270–274. Dunstan, D.W.; Daly, R.M.; Owen, N.; Jolley D.; De Courten, M.; Shaw, J., & Zimmet P. (2002). High intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care , 25(10), 1729–1736. http://dx.doi.org/10.2337/diacare.25.10.1729 González-Badillo, J.J., y Serna, J.R. (2002). Bases de la programación del entrenamiento de fuerza . Barcelona: INDE. Hamlin, M.J.; Marshall, H.C.; Hellemans, J.; Ainslie, P.N., & Anglem, N. (2010). Effect of intermittent hypoxic training on a 20 km time trial and 30 s anaerobic performance. Scandinavian Journal of Medicine and Science in Sports , 20(4), 651–661. http://dx.doi.org/10.1111/j.1600-0838.2009.00946.x Hudgins, B.; Scharfenberg, J.; Triplett, N., & McBride, J.M. (2013). Relationship between jumping ability and running performance in events of varying distance. Journal of Strength and Conditionating Research , 27(3), 563-567. http://dx.doi.org/10.1519/JSC.0b013e31827e136f Iida, H.; Kurano, M.; Takano, H.; Kubota, N.; Morita, T.; Meguro, K.; Sato, Y.; Abe, T.; Yamazaki, Y.; Uno, K.; Takenaka, K.; Hirose, K., & Nakajima, T. (2007). Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. European Journal of Applied Physiology , 100(3), 275–285. http://dx.doi.org/10.1007/s00421-007-0430-y Issurin, V. (2012). Entrenamiento deportivo: Periodización en bloques. Barcelona : Paidotribo. Kraemer, W.J.; Adams, K.; Cafarelli, E.; Dudley, G.A., & Dooly, C. (2002) American College of Sports Medicine Position Stand on Progression Models in Resistance Training for Healthy Adults. Medicine and Science in Sports and Exercise , 34, 364–380. http://dx.doi.org/10.1097/00005768-200202000-00027 Kraemer, W.J., y Spiering, A. (2008). Crecimiento muscular . En: Brown, L.E. (ed.). National Strength and Conditionating Association: Entrenamiento de la fuerza (pp. 29-44). Buenos Aires: Editorial Médica Panamericana. Loenneke, J.P.; Fahs, C.A.; Rossow, L.M.; Sherk, V.D.; Thiebaud, R.S., & Abe, T. (2012). Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. European Journal of Applied Physiology , 112(8), 2903–2912. http://dx.doi.org/10.1007/s00421-011-2266-8 Madarame, H.; Kurano, M.; Takano, H.; Iida, H.; Sato, Y.; Ohshima, H.; Abe, T.; Ishii, N.; Morita, T., & Nakajima, T. (2010). Effects of low-intensity resistance exercise with blood flow restriction on coagulation system in healthy subjects. Clinical Physiology and Functional Imaging , 30(3), 210-213. http://dx.doi.org/10.1111/j.1475-097X.2010.00927.x Madarame, H.; Neya, M.; Ochi, E.; Nakazato, K.; Sato, Y., & Ishii, N. (2008). Cross-Transfer Effects of Resistance Training with Blood Flow Restriction. Basic Sciences , 40(2), 258-263. Magnus, C.R.; Barss, T.S.; Lanovaz, J.L., & Farthing, J.P. (2010). Effects of crosseducation on the muscle after a period of unilateral limb immobilization using a shoulder sling and swathe. Journal of Applied Physiology , 109(6), 1887–94. http://dx.doi.org/10.1152/japplphysiol.00597.2010 Manimmanakorn, A.; Manimmanakorn N.; Taylor, R.; Draper, N.; Billaut, F.; Shearman, J. P., & Hamlin, M.J. (2013). Effects of resistance training combined with vascular occlusion or hypoxia on neuromuscular function in athletes. European Journal of Applied Physiology , 113(7), 1767–1774. http://dx.doi.org/10.1007/s00421-013-2605-z Manini, T. M., & Clark, B. C. (2009). Blood Flow Restricted Exercise and Skeletal Muscle Health. Sport Sciences Reviews , 37(2), 78-85. Martín-Hernández, J.; Blasco, R., y Herrero, A. J. (2011). El ejercicio físico suplementado con isquemia tisular como método de prevención de la atrofia muscular. Archivos de Medicina del deporte , 145, 383-393. Martín-Hernández, J.; Marín, P.J., y Herrero, A.J. (2011). Revisión de los procesos de hipertrofia muscular inducida por el entrenamiento de fuerza oclusivo. Revista Andaluza de Medicina del Deporte , 4(4), 152-157. Martín-Hernández, J.; Marín, P.J.; Menéndez, P.; Ferrero, C.; Loenneke, J.P. & Herrero, A.P. (2013a). Muscular adaptations after two different volumes of blood flow-restricted training. Scandinavian Journal of Medicine and Science in Sports , 23(2), 114-120. http://dx.doi.org/10.1111/sms.12036 Martín-Hernández, J.; Marín, P.J.; Menéndez, H.; Loenneke, J.P.; Coelho-e-Silva, M.J.; García-López, D., & Herrero, A.J. (2013b). Changes in muscle architecture induced by low load blood flow restricted training. Acta Physiologica Hungarica , 100(4), 411-418. http://dx.doi.org/10.1556/APhysiol.100.2013.011 McEwen, J. A.; Kelly, D. L.; Jardanowski, T., & Inkpen, K. (2002). Tourniquet safety in lower leg applications. Journal of Orthopaedic Nursing . 21(5), 55-62. Meeuwsen, T.; Hendriksen, I.J., & Holewijn, M. (2001). Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. European Journal of Applied Physiology , 4(4), 283–290. http://dx.doi.org/10.1007/s004210000363 Nakajima, T.; Kurano, M.; Iida, H.; Takano, H.; Madarame, H.; Yasuda, T.; Sato, Y., & Morita, T. (2010). Effects of Low-Intensity KAATSU Resistance Training on Skeletal Muscle Size and Muscle Strength/Endurance Capacity in Patients with Ischemic Heart Diseases. Medicine and Science in Sports and Exercise , 42(5), 743. http://dx.doi.org/10.1249/01.MSS.0000386155.62097.e0 Nakajima, T.; Kurano, M.; Iida, H.; Takano, H.; Oonuma, H.; Morita, T.; Meguro, K.; Sato, Y., & Nagata, T. (2006). Use and safety of Kaatsu training: Results of a national survey. International Journal of KAATSU Training Research, 2, 5–13. http://dx.doi.org/10.3806/ijktr.2.5 Pope, Z.K.; Willardson, J.M, & Schoenfeld, B.J. (2013). Exercise and blood flow restriction. Journal of Strength and Conditionating Research , 27(10), 2914-2926. http://dx.doi.org/10.1519/JSC.0b013e3182874721 Ratamess, N.A.; Albar, B.A.; Evetoch, T.K.; Housh, T. J.; Kibler, W.B.; Kraemer, W.J. & Triplett, N.T. (2009). Special Communication. American College of Sports Medicine Position Stand: Progression models in resistance training for healthy adults. Medicine and Science in Sports and Excercise , 41(3), 687-708. http://dx.doi.org/10.1249/MSS.0b013e3181915670 Reevs, G.V.; Kraemer, R.R.; Hollander, B.D.; Clavier, J.; Thomas, C.; Francois, M., & Castracane, V.D. (2006). Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. Journal of Applied Physiology , 101(6), 1616–1622. http://dx.doi.org/10.1152/japplphysiol.00440.2006 Sato, Y.; Yoshitomi, A., & Abe, T. (2005). Acute growth hormone response to low-intensity KAATSU resistance exercise: Comparison between arm and leg. International Journal of KAATSU Training Research , 2, 45–50. http://dx.doi.org/10.3806/ijktr.1.45 Storer, T.W.; Magliano, L.; Woodhouse, L.; Lee, M.L.; Dzekov, C.; Dzekov, J.; Casaburi, R., & Bhasin, S. (2003). Testosterone dose-dependently increases maximal voluntary strength and leg power, but does not affect fatigability or specific tension. Journal of Clinical Endocrinology and Metabolism , 88(4), 1478–1485. http://dx.doi.org/10.1210/jc.2002-021231 Takano, H.; Morita, T.; Iida, H.; Asada, K.; Kato, M.; Uno, K.; Hirose, K.; Matsumoto, A., & Hirata Y, (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. European Journal of Applied Physiology , 95(1), 65-73. http://dx.doi.org/10.1007/s00421-005-1389-1 Takarada, Y.; Takazawa, H., & Ishii, N. (2000a). Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Medicine and Science in Sports and Excercise , 32, 2035–2039. http://dx.doi.org/10.1097/00005768-200012000-00011 Takarada, Y.; Nakamura, Y.; Aruga, S.; Onda, T.; Miyazaki, S., & Ishii, N. (2000b). Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. Journal of Applied Physiology, 88(12), 61–65. Thiebaud, R.; Yasuda, T.; Loenneke, J.P., & Abe, T. (2013). Effects of low-intensity concentric and eccentric exercise combined with blood flow restriction on indices of exercise-induced muscle damage. Interventional Medicine and Applied Science , 5 (2), 53–59. http://dx.doi.org/10.1556/IMAS.5.2013.2.1 Tipton, K.D., & Wolfe, R.R. (2004). Protein and amino acids for athletes. Journal Sports Science , 22, 65-79. http://dx.doi.org/10.1080/0264041031000140554 Umbell, J.D.; Hoffman, R.L.; Dearth, D.J.; Cheboun, G.S., & Manini, T.M. (2009). Delayed-onset muscle soreness induced by low-load blood flow-restricted exercise. European Journal of Applied Physiology , 107(6), 687–695. http://dx.doi.org/10.1007/s00421-009-1175-6 Weatherholt, A.; Beekley, M.; Greer, S.; Urtel, M., & Mikesky, A. (2013). Modified Kaatsu Training: Adaptations and Subject Perceptions. Medicine and Science in Sports and Exercise , 45(5), 952-961. http://dx.doi.org/10.1249/MSS.0b013e31827ddb1f Yamanaka, T.; Farley, R., & Caputo, J.L. (2013). Occlusion training increases muscular strength in división IA football players. Journal of Strength and Conditioning Research , 26(9), 2523-2529. http://dx.doi.org/10.1519/JSC.0b013e31823f2b0e Yasuda, T.; Abe, T.; Sato, Y.; Midorikawa, T.; Kearns, C.F.; Inoue, K., & Ishii, N. (2005). Muscle fiber cross-sectional area is increased after two weeks of twice daily KAATSU-resistance training. International Journalof KAATSU Training , 1, 65–70. http://dx.doi.org/10.3806/ijktr.1.65 Yasuda, T.; Loenneke, J.P; Thiebaud, R.S., & Abe, T. (2012). Effects of Blood Flow Restricted Low-Intensity Concentric or Eccentric Training on Muscle Size and Strength. Plos one , 7(12), e52843. http://dx.doi.org/10.1371/journal.pone.0052843 Yasuda, T.; Ogasawara, R.; Sakamaki, M.; Bemben, M.G., & Abe, T. (2011). Relationship between limb and trunk muscle hypertrophy following high intensity resistance training and blood flow restricted low intensity resistance training. Clinical Physiology and Functional Imaging , 31(5), 347–351. http://dx.doi.org/10.1111/j.1475-097X.2011.01022.x Younger, A.S.; McEwen, J.A., & Inkpen, K. (2004). Wide contoured thigh cuffs and automated limb occlusion measurement allow lower tourniquet "press"ures. Clinical Orthopaedics and Related Research , 428, 286-293. http://dx.doi.org/10.1097/01.blo.0000142625.82654.b3
  • 其他摘要:El entrenamiento de fuerza orientado a aumentar la masa muscular se ha convertido en un objetivo común en programas de entrenamiento tanto en deportistas de alto rendimiento como en personas que realizan programas de actividad física con objetivo de mejorar su salud o calidad de vida. Generalmente, el trabajo de fuerza orientado hacia la hipertrofia muscular se ha asociado con la utilización de altas cargas de trabajo (70-85% de 1 RM). Actualmente, se ha propuesto que el entrenamiento de fuerza con cargas de tan solo el 20% de 1 RM realizadas en condiciones de restricción del flujo sanguíneo podría provocar incrementos en los niveles de fuerza y masa muscular similares a los observados al ejercitarse con cargas altas. Dado que ciertos colectivos podrían beneficiarse del empleo de bajas cargas en sus programas de entrenamiento orientados a incrementar la masa muscular, el objetivo del presente trabajo de revisión bibliográfica ha sido el de revisar en la literatura las evidencias que existen en torno a la efectividad del entrenamiento con restricción del flujo sanguíneo a la hora de provocar hipertrofia muscular.AbstractStrength training focuses on increasing muscle mass has become in a frequent target in training programs in both elite athletes and people performing physical activity programs to improve their health or quality of life. Generally, the resistance training oriented muscle hypertrophy has been associated with the use of high workloads (70-85% of 1RM). Currently, it has been proposed that the resistance training with loads of only 20% 1RM under conditions of restricted blood flow can induce increases in strength levels similar to resistance training with high intensities. Because certain groups could benefit from the use of low loads in their strength training programs designed to increase muscle mass, the objective of the present study was to review the literature on the existing evidence about the effectiveness of blood flow restriction training inducing muscle hypertrophy.http://dx.doi.org/10.5232/ricyde2014.03806---------------------------------------------------------------------------Referencias/referencesAagaard, P.; Andersen, J.L.; Dyhre-Poulsen, P.; Leffers, A.M.; Wagner, A., Magnusson, S.P.; Halkjaer-Kristensen, J., & Simonsen, E.B. (2001). A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. The Journal of Physiology, 534(2), 613–623. http://dx.doi.org/10.1111/j.1469-7793.2001.t01-1-00613.xAbe, T.; Charles, F.; Kearns, & Sato, Y. (2005). Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. Journal of Applied Physiology, 100(5), 1460–1466. http://dx.doi.org/10.1152/japplphysiol.01267.2005Abe T.; Kearns, C.F., & Sato, Y. (2006). Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. Journal of Applied Physiology, 100(5), 1460-1466. http://dx.doi.org/10.1152/japplphysiol.01267.2005Abe T.; Fujita S.; Nakajima, T.; Sakamaki, M.; Ozaki, H.; Ogasawara, R.; Sugaya, M.; Kudo, M.; Kurano, M.; Yasuda, T.; Sato, Y.; Ohshima, H.; Mukai, C., & Ishii, N. (2010). Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2max in young men. Journal of Sports Science and Medicine, 9(3), 452-458Abe, T.; Loenneke, J. P.; Fahs, C. A.; Rossow, L. M.; Thiebaud, R. S., & Bemben, M. G. (2012). Exercise intensity and muscle hypertrophy in blood flow–restricted limbs and non-restricted muscles: a brief review. Clinical Physiology and Functional Imaging, 32(4), 247–252.http://dx.doi.org/10.1111/j.1475-097X.2012.01126.xÁlvarez, J.J.R.; López-Silvarrey, F.J.; Segovia Martínez, J.C.; Martínez Melen, H., y Legido-Arce, J.C. (2008). Rehabilitación del paciente con lesión del ligamento cruzado anterior de la rodilla (LCA). Revisión. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte, 8(29), 62-92.American College of Sports Medicine. (1998). Position stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Medicine and Science in Sports and Exercise, 30, 975–991.http://dx.doi.org/10.1097/00005768-199806000-00032Booth, F. W., & Criswell D.S. (1997) Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures. International Journal of Sports Medicine, 18(4), 265–269.http://dx.doi.org/10.1055/s-2007-972723Cermak, N.M.; Snijders, T.; McKay, B.R.; Parise, G.; Verdjik, L.B.; Tranopolsky, M.A.; Gibala, M., & Van Loon, L.J. (2013). Eccentric exercise increases satellite cell content in type II muscle fibers. Medicine and Science in Sports and Exercise, 45(2), 230-237.http://dx.doi.org/10.1249/MSS.0b013e318272cf47Clark, B.C.; Manini, T.M.; Hoffman, R.L.; Williams, P.S.; Guiler, M.K.; Knutson, M.J.; McGlynn, M.L., & Kurshnick, M.R. (2011). Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scandinavian Journal of Medicine and Science in Sports, 21(5), 653-662.http://dx.doi.org/10.1111/j.1600-0838.2010.01100.xColón, C.J.P.; Collado, P.S. y Cuevas, M.J. (2014). Beneficios del entrenamiento de fuerza para la prevención y tratamiento de la sarcopenia. Nutrición Hospitalaria, 29(5), 979-988.Csapo, R.; Alegre, L.M., & Baron, R. (2011) Time kinetics of acute changes in muscle architecture in response to resistance exercise. Journal of Science and. Medicine in Sports, 14(3), 270–274.Dunstan, D.W.; Daly, R.M.; Owen, N.; Jolley D.; De Courten, M.; Shaw, J., & Zimmet P. (2002). High intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care, 25(10), 1729–1736.http://dx.doi.org/10.2337/diacare.25.10.1729González-Badillo, J.J., y Serna, J.R. (2002). Bases de la programación del entrenamiento de fuerza. Barcelona: INDE.Hamlin, M.J.; Marshall, H.C.; Hellemans, J.; Ainslie, P.N., & Anglem, N. (2010). Effect of intermittent hypoxic training on a 20 km time trial and 30 s anaerobic performance. Scandinavian Journal of Medicine and Science in Sports, 20(4), 651–661.http://dx.doi.org/10.1111/j.1600-0838.2009.00946.xHudgins, B.; Scharfenberg, J.; Triplett, N., & McBride, J.M. (2013). Relationship between jumping ability and running performance in events of varying distance. Journal of Strength and Conditionating Research, 27(3), 563-567.http://dx.doi.org/10.1519/JSC.0b013e31827e136fIida, H.; Kurano, M.; Takano, H.; Kubota, N.; Morita, T.; Meguro, K.; Sato, Y.; Abe, T.; Yamazaki, Y.; Uno, K.; Takenaka, K.; Hirose, K., & Nakajima, T. (2007). Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. European Journal of Applied Physiology, 100(3), 275–285.http://dx.doi.org/10.1007/s00421-007-0430-yIssurin, V. (2012). Entrenamiento deportivo: Periodización en bloques. Barcelona: Paidotribo.Kraemer, W.J.; Adams, K.; Cafarelli, E.; Dudley, G.A., & Dooly, C. (2002) American College of Sports Medicine Position Stand on Progression Models in Resistance Training for Healthy Adults. Medicine and Science in Sports and Exercise, 34, 364–380.http://dx.doi.org/10.1097/00005768-200202000-00027Kraemer, W.J., y Spiering, A. (2008). Crecimiento muscular. En: Brown, L.E. (ed.). National Strength and Conditionating Association: Entrenamiento de la fuerza (pp. 29-44). Buenos Aires: Editorial Médica Panamericana.Loenneke, J.P.; Fahs, C.A.; Rossow, L.M.; Sherk, V.D.; Thiebaud, R.S., & Abe, T. (2012). Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. European Journal of Applied Physiology, 112(8), 2903–2912.http://dx.doi.org/10.1007/s00421-011-2266-8Madarame, H.; Kurano, M.; Takano, H.; Iida, H.; Sato, Y.; Ohshima, H.; Abe, T.; Ishii, N.; Morita, T., & Nakajima, T. (2010). Effects of low-intensity resistance exercise with blood flow restriction on coagulation system in healthy subjects. Clinical Physiology and Functional Imaging, 30(3), 210-213.http://dx.doi.org/10.1111/j.1475-097X.2010.00927.xMadarame, H.; Neya, M.; Ochi, E.; Nakazato, K.; Sato, Y., & Ishii, N. (2008). Cross-Transfer Effects of Resistance Training with Blood Flow Restriction. Basic Sciences, 40(2), 258-263.Magnus, C.R.; Barss, T.S.; Lanovaz, J.L., & Farthing, J.P. (2010). Effects of crosseducation on the muscle after a period of unilateral limb immobilization using a shoulder sling and swathe. Journal of Applied Physiology, 109(6), 1887–94.http://dx.doi.org/10.1152/japplphysiol.00597.2010Manimmanakorn, A.; Manimmanakorn N.; Taylor, R.; Draper, N.; Billaut, F.; Shearman, J. P., & Hamlin, M.J. (2013). Effects of resistance training combined with vascular occlusion or hypoxia on neuromuscular function in athletes. European Journal of Applied Physiology, 113(7), 1767–1774.http://dx.doi.org/10.1007/s00421-013-2605-zManini, T. M., & Clark, B. C. (2009). Blood Flow Restricted Exercise and Skeletal Muscle Health. Sport Sciences Reviews, 37(2), 78-85.Martín-Hernández, J.; Blasco, R., y Herrero, A. J. (2011). El ejercicio físico suplementado con isquemia tisular como método de prevención de la atrofia muscular. Archivos de Medicina del deporte, 145, 383-393.Martín-Hernández, J.; Marín, P.J., y Herrero, A.J. (2011). Revisión de los procesos de hipertrofia muscular inducida por el entrenamiento de fuerza oclusivo. Revista Andaluza de Medicina del Deporte, 4(4), 152-157.Martín-Hernández, J.; Marín, P.J.; Menéndez, P.; Ferrero, C.; Loenneke, J.P. & Herrero, A.P. (2013a). Muscular adaptations after two different volumes of blood flow-restricted training. Scandinavian Journal of Medicine and Science in Sports, 23(2), 114-120.http://dx.doi.org/10.1111/sms.12036Martín-Hernández, J.; Marín, P.J.; Menéndez, H.; Loenneke, J.P.; Coelho-e-Silva, M.J.; García-López, D., & Herrero, A.J. (2013b). Changes in muscle architecture induced by low load blood flow restricted training. Acta Physiologica Hungarica, 100(4), 411-418.http://dx.doi.org/10.1556/APhysiol.100.2013.011McEwen, J. A.; Kelly, D. L.; Jardanowski, T., & Inkpen, K. (2002). Tourniquet safety in lower leg applications. Journal of Orthopaedic Nursing. 21(5), 55-62.Meeuwsen, T.; Hendriksen, I.J., & Holewijn, M. (2001). Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. European Journal of Applied Physiology, 4(4), 283–290.http://dx.doi.org/10.1007/s004210000363Nakajima, T.; Kurano, M.; Iida, H.; Takano, H.; Madarame, H.; Yasuda, T.; Sato, Y., & Morita, T. (2010). Effects of Low-Intensity KAATSU Resistance Training on Skeletal Muscle Size and Muscle Strength/Endurance Capacity in Patients with Ischemic Heart Diseases. Medicine and Science in Sports and Exercise, 42(5), 743.http://dx.doi.org/10.1249/01.MSS.0000386155.62097.e0Nakajima, T.; Kurano, M.; Iida, H.; Takano, H.; Oonuma, H.; Morita, T.; Meguro, K.; Sato, Y., & Nagata, T. (2006). Use and safety of Kaatsu training: Results of a national survey. International Journal of KAATSU Training Research, 2, 5–13.http://dx.doi.org/10.3806/ijktr.2.5Pope, Z.K.; Willardson, J.M, & Schoenfeld, B.J. (2013). Exercise and blood flow restriction. Journal of Strength and Conditionating Research, 27(10), 2914-2926.http://dx.doi.org/10.1519/JSC.0b013e3182874721Ratamess, N.A.; Albar, B.A.; Evetoch, T.K.; Housh, T. J.; Kibler, W.B.; Kraemer, W.J. & Triplett, N.T. (2009). Special Communication. American College of Sports Medicine Position Stand: Progression models in resistance training for healthy adults. Medicine and Science in Sports and Excercise, 41(3), 687-708.http://dx.doi.org/10.1249/MSS.0b013e3181915670Reevs, G.V.; Kraemer, R.R.; Hollander, B.D.; Clavier, J.; Thomas, C.; Francois, M., & Castracane, V.D. (2006). Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. Journal of Applied Physiology, 101(6), 1616–1622.http://dx.doi.org/10.1152/japplphysiol.00440.2006Sato, Y.; Yoshitomi, A., & Abe, T. (2005). Acute growth hormone response to low-intensity KAATSU resistance exercise: Comparison between arm and leg. International Journal of KAATSU Training Research, 2, 45–50.http://dx.doi.org/10.3806/ijktr.1.45Storer, T.W.; Magliano, L.; Woodhouse, L.; Lee, M.L.; Dzekov, C.; Dzekov, J.; Casaburi, R., & Bhasin, S. (2003). Testosterone dose-dependently increases maximal voluntary strength and leg power, but does not affect fatigability or specific tension. Journal of Clinical Endocrinology and Metabolism, 88(4), 1478–1485.http://dx.doi.org/10.1210/jc.2002-021231Takano, H.; Morita, T.; Iida, H.; Asada, K.; Kato, M.; Uno, K.; Hirose, K.; Matsumoto, A., & Hirata Y, (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. European Journal of Applied Physiology, 95(1), 65-73.http://dx.doi.org/10.1007/s00421-005-1389-1Takarada, Y.; Takazawa, H., & Ishii, N. (2000a). Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Medicine and Science in Sports and Excercise, 32, 2035–2039.http://dx.doi.org/10.1097/00005768-200012000-00011Takarada, Y.; Nakamura, Y.; Aruga, S.; Onda, T.; Miyazaki, S., & Ishii, N. (2000b). Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. Journal of Applied Physiology, 88(12), 61–65.Thiebaud, R.; Yasuda, T.; Loenneke, J.P., & Abe, T. (2013). Effects of low-intensity concentric and eccentric exercise combined with blood flow restriction on indices of exercise-induced muscle damage. Interventional Medicine and Applied Science, 5 (2), 53–59.http://dx.doi.org/10.1556/IMAS.5.2013.2.1Tipton, K.D., & Wolfe, R.R. (2004). Protein and amino acids for athletes. Journal Sports Science, 22, 65-79.http://dx.doi.org/10.1080/0264041031000140554Umbell, J.D.; Hoffman, R.L.; Dearth, D.J.; Cheboun, G.S., & Manini, T.M. (2009). Delayed-onset muscle soreness induced by low-load blood flow-restricted exercise. European Journal of Applied Physiology, 107(6), 687–695.http://dx.doi.org/10.1007/s00421-009-1175-6Weatherholt, A.; Beekley, M.; Greer, S.; Urtel, M., & Mikesky, A. (2013). Modified Kaatsu Training: Adaptations and Subject Perceptions. Medicine and Science in Sports and Exercise, 45(5), 952-961.http://dx.doi.org/10.1249/MSS.0b013e31827ddb1fYamanaka, T.; Farley, R., & Caputo, J.L. (2013). Occlusion training increases muscular strength in división IA football players. Journal of Strength and Conditioning Research, 26(9), 2523-2529.http://dx.doi.org/10.1519/JSC.0b013e31823f2b0eYasuda, T.; Abe, T.; Sato, Y.; Midorikawa, T.; Kearns, C.F.; Inoue, K., & Ishii, N. (2005). Muscle fiber cross-sectional area is increased after two weeks of twice daily KAATSU-resistance training. International Journalof KAATSU Training, 1, 65–70.http://dx.doi.org/10.3806/ijktr.1.65Yasuda, T.; Loenneke, J.P; Thiebaud, R.S., & Abe, T. (2012). Effects of Blood Flow Restricted Low-Intensity Concentric or Eccentric Training on Muscle Size and Strength. Plos one, 7(12), e52843.http://dx.doi.org/10.1371/journal.pone.0052843Yasuda, T.; Ogasawara, R.; Sakamaki, M.; Bemben, M.G., & Abe, T. (2011). Relationship between limb and trunk muscle hypertrophy following high intensity resistance training and blood flow restricted low intensity resistance training. Clinical Physiology and Functional Imaging, 31(5), 347–351.http://dx.doi.org/10.1111/j.1475-097X.2011.01022.xYounger, A.S.; McEwen, J.A., & Inkpen, K. (2004). Wide contoured thigh cuffs and automated limb occlusion measurement allow lower tourniquet "press"ures. Clinical Orthopaedics and Related Research, 428, 286-293.http://dx.doi.org/10.1097/01.blo.0000142625.82654.b3
  • 关键词:resistance training;hypertrophy;KAATSU;blood flow restriction.;entrenamiento de fuerza;hipertrofia;restricción del flujo sanguíneo;resistance training;hypertrophy;KAATSU;blood flow restriction.
  • 其他关键词:resistance training; hypertrophy; KAATSU; blood flow restriction.
国家哲学社会科学文献中心版权所有