首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Detection of Honey Adulteration using Hyperspectral Imaging
  • 本地全文:下载
  • 作者:Sahameh Shafiee ; Gerrit Polder ; Saeid Minaei
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:16
  • 页码:311-314
  • DOI:10.1016/j.ifacol.2016.10.057
  • 语种:English
  • 出版社:Elsevier
  • 摘要:This study investigates the application of hyperspectral imaging system and data mining based classifiers for honey adulteration detection. Hyperspectral images from pure and adulterated samples were captured in using a VIS-NIR hyperspectral camera (400 – 1000 nm). After preprocessing the images, five different data mining based techniques, including artificial neural network (ANN), support vector machine (SVM), Linear discriminant analysis (LDA), Fisher and Parzen classifiers were applied for supervised image classification. Classifier test results show the highest classification accuracy of 95% for ANN classifier. Other classifiers including SVM with radial basis kernel function (92%), LDA (90%), Fisher (89 %), and Parzen with 84% correct classification rate also showed acceptable results. This research shows the capability of hyperspectral imaging for honey authentication.
  • 关键词:Honey adulterationHyperspectral imagingArtificial neural networkSupport vector machineLinear discriminant classifier
国家哲学社会科学文献中心版权所有